

Operation and maintenance instructions for driver configurator QSet

5000003339

Date 18/05/17

Operation and maintenance instructions for driver configurator QSet

1. General recommendations

The recommendations regarding safe use in this document should be observed at all times.

- Some hazards can only be associated with the product after it has been connected to the driver. It is the task of the final user to identify these hazards and reduced the associated risks accordingly.
- Before proceeding with use of the product, carefully read all information in this document.
- Conserve this document in a safe place accessible to all personnel throughout the product life cycle.
- This document should accompany the product in the event of transfer to a new owner or user.
- The instructions in this manual must be observed together with the instructions and additional information regarding connected driver, available from the following reference links:
 - o web site<u>http://www.camozzi.com</u>
 - o Camozzi general catalogue
 - o Technical assistance service
- Assembly and start-up operations must be performed exclusively by qualified and authorized personnel on the basis of these instructions.
- For all situations not contemplated in this manual and in situations in which there is the risk of potential damage to objects, or injury to persons or animals, contact Camozzi for advice.
- The product may only be used in observance of the specifications provided; if these requirements are not met, the product may only be used on authorisation by Camozzi.

2. System requirements

	System requirements
CPU	2.0 GHz or greater
RAM	2 GB or greater
Operating System	Windows 7 or newer
Minimum HD free space available	600 MB
USB	2.0 standard
Minimum Screen resolution	1280x720

Comply with the above system requirements.

3. Installation and start-up

• Download the set-up file of the software "QSet" from the web site <u>http://www.camozzi.com</u> and proceed with installation according to the instructions on screen displayed during the process.

Start the "QSet" software by the appropriate icon on the screen or from appropriate folder on the program menu.

4. Configuration

Once QSet is started, you will be required to enter the device code

By entering the correct code and pressing the View button, the description of the selected item will be displayed.

In the event you do not know the code, you can select the View button with the empty field; this will allow you to select the device by using the drop-down menu.

	QSET - CONFIG	URATION SYSTEM		
Parameters	Gear Ratio	Motor Code	Connection	
inear Actuator Co	de			
Туре	~)			
	unkno	wn code		
< Back			Next >	

In particular, you will be required to select:

- Cylinder Ball Screw
- Cylinder Lead Screw
- Linear Belt
- Linear Belt Screw
- Only Motor

Each field will then be edited manually.

By pressing the Next button, you will access the next page.

4.1. Gear ratio

QSET - CONFIGURATION SYSTEM							
Parameters	Gear Ratio	Motor Code	Connection				
Linear Actuator Cod 6E032B50200P10A	le						
Gear Ratio 1.0	:1						
< Back			Next >				

You will be required to enter the gear ratio which may be a whole number (1.0:1) or a decimal 1.5:1.

By pressing the Next button, you will access the next page, by pressing the Back button, you will return to the previous page.

4.2. Selection of the motor type

By entering the code printed on the label on the motor and pressing the View button, description of the type of motor selected will be displayed:

	QSET - CONFIG	URATION SYSTE	м	
Parameters	Gear Ratio	Motor Co	de	Connection
Linear Actuator Cod 6E032B50200P10A	c			
Motor Code	MTB-0	110-2-0-E	\supset	View
MOTOR BRUSHLESS				
Power 100W		Supply	220VDC	
Brake Without bra	ke	Encoder	Standar	d 13bit
< Back				Next >

In Brushless motors, the following details will be detailed:

- Power
- Supply Voltage
- The presence of brakes
- The encoder available on the motor.

In stepper motors, the following information will be detailed:

- Size
- Step angle
- Torque
- Presence of a connector
- Presence of brakes

- Round shaft or with key
- Input or output shaft
- Presence of an encoder

4.3. Connection

By pressing the Next button, you will access the next page where you can select the type of COM connection.

QSET - CONFIGURATION SYSTEM X					
Parameters	Gear Ratio	Motor Code	Connection		
Linear Actuator Cot 6E032BS0200P10A	le				
Connection COM	COM8 v	Connect			
Connection Ok	•				
< Back			Next >		

The green dot displayed next to Connection OK confirms successful connection.

Connection Ok 🔹

If, instead, the dot is gray. it means that connection was not successful; select another COM and press Connect once again.

Connection Ok 🔹

By pressing the NEXT button, you will access the SETUP page.

4.3.1. Bluetooth

If you want to establish a Bluetooth connection with the stepper driver DRCS, before to start the software QSet you need to link a COM port by the Windows menu "Bluetooth device-add device" (the authentication code is "0000"). In the above page, select the Bluetooth check, select the COM port associated and press the command Connect.

5. General

All common commands of Windows have been included in the General page.

GENERAL	~
New	
Open	
Save	
Notes	

Language

Exit

5.1. New

Allows opening a new program file.

5.2. Open

Allows opening a program file previously created.

5.3. Save

Allows saving an open program file.

5.4. Notes

Allows opening a dialogue box where notes related to the project can be entered.

5.5. Language

The Language can be selected.

5.6. Exit

You can Exit the program.

6. Setup

The Setup page is divided into 4 sections and each section has a functional role:

- Generals Parameters
- Homing Parameters
- Jog Parameters
- Set Digital Output

6.1. General Parameters

The "General Parameters" window summarizes the basic settings of the device selected and, in particular, note that there some differences between Brushless motors and Stepper motors.

GENERALS PARAMETERS Units mm v							
Torque Max (A) 2,70000							
Max Stroke (100,010) Direction	Standar v						
Operation Mode Digital V							
Enable External							

Torque Max: this parameter cannot be changed and it indicates the maximum torque that the system can develop; the current indicated depends on the motor type selected during the configuration phase.

Max Stroke: this parameter indicates the maximum system course value selected during configuration phase. This value can be reduced but not increased.

Direction: this parameter allows setting the sense of rotation of the motor which can be clockwise (standard) or counter clockwise (reverse).

Units: you can select the units of measure that can be expressed in "mm" or "inc" (inches).

6.1.1. Operation Mode Digital (for brushless and stepper motor)

The drives in use the entry of 6 digital inputs whose binary combination produces 64 different combinations; a command line will be associated to every single combination (see Menage page). The combinations are expressed as follows:

In6	In5	In4	In3	In2	In1	Programma	Linea Strobe
OFF	OFF	OFF	OFF	OFF	OFF	1	\uparrow
OFF	OFF	OFF	OFF	OFF	ON	2	\uparrow
OFF	OFF	OFF	OFF	ON	OFF	3	\uparrow
OFF	OFF	OFF	OFF	ON	ON	4	\uparrow

Operation and maintenance instructions for driver configurator QSet

5000003339

Date 18/05/17

		1					
OFF	OFF	OFF	ON	OFF	OFF	5	\uparrow
OFF	OFF	OFF	ON	OFF	ON	6	\uparrow
OFF	OFF	OFF	ON	ON	OFF	7	\uparrow
OFF	OFF	OFF	ON	ON	ON	8	\uparrow
OFF	OFF	ON	OFF	OFF	OFF	9	\uparrow
OFF	OFF	ON	OFF	OFF	ON	10	\uparrow
OFF	OFF	ON	OFF	ON	OFF	11	\uparrow
OFF	OFF	ON	OFF	ON	ON	12	\uparrow
OFF	OFF	ON	ON	OFF	OFF	13	\uparrow
OFF	OFF	ON	ON	OFF	ON	14	\uparrow
OFF	OFF	ON	ON	ON	OFF	15	\uparrow
OFF	OFF	ON	ON	ON	ON	16	\uparrow
OFF	ON	OFF	OFF	OFF	OFF	17	\uparrow
OFF	ON	OFF	OFF	OFF	ON	18	\uparrow
OFF	ON	OFF	OFF	ON	OFF	19	\uparrow
OFF	ON	OFF	OFF	ON	ON	20	\uparrow
OFF	ON	OFF	ON	OFF	OFF	21	\uparrow
OFF	ON	OFF	ON	OFF	ON	22	\uparrow
OFF	ON	OFF	ON	ON	OFF	23	\uparrow
OFF	ON	OFF	ON	ON	ON	24	\uparrow
OFF	ON	ON	OFF	OFF	OFF	25	\uparrow
OFF	ON	ON	OFF	OFF	ON	26	\uparrow
OFF	ON	ON	OFF	ON	OFF	27	\uparrow
OFF	ON	ON	OFF	ON	ON	28	\uparrow
OFF	ON	ON	ON	OFF	OFF	29	\uparrow
OFF	ON	ON	ON	OFF	ON	30	\uparrow
OFF	ON	ON	ON	ON	OFF	31	\uparrow
OFF	ON	ON	ON	ON	ON	32	\uparrow
ON	OFF	OFF	OFF	OFF	OFF	33	\uparrow
ON	OFF	OFF	OFF	OFF	ON	34	\uparrow
ON	OFF	OFF	OFF	ON	OFF	35	\uparrow
ON	OFF	OFF	OFF	ON	ON	36	\uparrow
ON	OFF	OFF	ON	OFF	OFF	37	\uparrow
ON	OFF	OFF	ON	OFF	ON	38	\uparrow
ON	OFF	OFF	ON	ON	OFF	39	\uparrow
ON	OFF	OFF	ON	ON	ON	40	\uparrow
ON	OFF	ON	OFF	OFF	OFF	41	\uparrow
ON	OFF	ON	OFF	OFF	ON	42	\uparrow
ON	OFF	ON	OFF	ON	OFF	43	\uparrow
ON	OFF	ON	OFF	ON	ON	44	\uparrow
ON	OFF	ON	ON	OFF	OFF	45	\uparrow
ON	OFF	ON	ON	OFF	ON	46	\uparrow
L							

Operation and maintenance instructions for driver configurator QSet

5000003339

Date 18/05/17

ON	OFF	ON	ON	ON	OFF	47	\uparrow
ON	OFF	ON	ON	ON	ON	48	\uparrow
ON	ON	OFF	OFF	OFF	OFF	49	\uparrow
ON	ON	OFF	OFF	OFF	ON	50	\uparrow
ON	ON	OFF	OFF	ON	OFF	51	\uparrow
ON	ON	OFF	OFF	ON	ON	52	\uparrow
ON	ON	OFF	ON	OFF	OFF	53	\uparrow
ON	ON	OFF	ON	OFF	ON	54	\uparrow
ON	ON	OFF	ON	ON	OFF	55	\uparrow
ON	ON	OFF	ON	ON	ON	56	\uparrow
ON	ON	ON	OFF	OFF	OFF	57	\uparrow
ON	ON	ON	OFF	OFF	ON	58	\uparrow
ON	ON	ON	OFF	ON	OFF	59	\uparrow
ON	ON	ON	OFF	ON	ON	60	\uparrow
ON	ON	ON	ON	OFF	OFF	61	\uparrow
ON	ON	ON	ON	OFF	ON	62	\uparrow
ON	ON	ON	ON	ON	OFF	63	\uparrow
ON	ON	ON	ON	ON	ON	64	\uparrow

ATTENTION: command line 1 (with all inputs OFF) corresponds to the zero command (Homing).

6.1.1.1. Enable external

You can set also external Jog command by selecting the check box as showed in the below image:

GENERALS PARAMETERS		Units (mm v)
Torque Max (A) 2.70000		
Max Stroke [mm] (100.010)	Direction	Standard v
Operation Mode (Digital v		
Enable External Jog 🛛 🔽		

If you select the external Jog command the IN7 and IN6 in Brushless driver and Camozzi DRCS Stepper driver are used.

A message advises you that the number of command line will be reduced.

Operation and maintenance instructions for driver configurator QSet

5000003339

Date 18/05/17

🚰 Camozzi Automation - QSet - *	<u>×</u>						
General <u>setup</u> Manage advanced Help	¥ -1 G						
HOMING PARAMETERS GENERALS PARAMETERS	nits (mm v)						
Homing Method Near home sensor, then change to lower speed and search v Torque Max (A) 2,70000							
Dir, Proximity (Left v) Dir, Top Zero (Right v) Max Stroke [mm] (100.010) Direction	Standard v						
Vel. Proximity [mm/s]							
Home Offset [mm]							
This setting will reduce the number of possible positions. Do you still proceed?							
JOG PARAMETERS Cancel No Yes							
Velocity jOG [mm/s] 5.000 Acc.jOG [mm/s] 00TPUT 1 Alarm OUTPUT 2	Busy						
Dec JOG [mm/s] (50.000) Max Step JOG [mm/s] (5.000) OUTPUT 3 (Not Configured) V OUTPUT 4	(Not Configured) ×						
	(Not Configured)						

6.1.2. Operation Mode Analog (only for brushless motors)

Operation Mode Analog v	Scaling (mm/s=1V)	0.000 🗘
	Dead Band [mV]	0.000 🗘

Setting the analogue signal allows controlling the motor's motion following a voltage profile that can be positive or negative depending on the sense of rotation of the motor.

With the Scaling parameter, you can set the ratio between linear velocity and voltage.

Example: by entering 10 as value, you will have a velocity of 10 mm/s for every volt; therefore, by entering the maximum reference (10V), you will have a velocity of 100 mm/s.

With the "Dead Band" parameter, you can filter noise (not transforming it into a velocity parameter); values between the 10mV and 500mV are usually used.

6.1.3. Operation Mode step-direction (only for stepper motors)

GENERALS PARAMETERS			Units mm ·
Max Stroke	100,010 🗘	Direction	Standar v
Operation Mode	StepDir v		
Enable External			

By using this operation mode, is necessary to use the signals FASE B- and FASE B + (pin 2 and pin 4 on "Encoder connector) in order to set the motor rotation direction and the signals FASE A- and FASE A+ (pin 6 and pin 8 on "Encoder connector) in order to increment the step motor position.

Is possible to invert the motor rotation direction by changing the value "Direction": "Standard" or "Inverse".

By using this operation mode, is possible to enable the communication via CanOpen network (only with driver DRCS-XXX-X-C-X-X).

Is possible to invert the motor rotation direction by changing the value "Direction" ("Standard" or "Inverse"), the Node ID (from 1 to 127) and the Baud rate (10k, 20k, 50k, 100k, 125k, 125k, 250k, 500k, 800k, 1M).

6.2. Jog Parameters (only for Operation Mode digital)

JOG PARAMETE	RS		
Velocity JOG [mm/s]	10.000 🗘	Acc JOG [mm/s]	100.000 🗘
Dec JOG [mm/s]	100.000 🗘	Max Step JOG [mm/s]	5.000 🗘

In Jog Parameters you can select the maximum desired Jog velocity; acceleration and deceleration values.

You can also set a step movement of the Jog; in the window

		-
Max Step JOG [mm/s]	(5.000	÷)

You can set the quantity, mm or inches, for each movement.

6.3. Homing Parameters

Based on the motor type, there are several rules for finding the zero position (homing).

6.3.1. Brushless Motors

HOMING PARAMETERS			
Homing Method Near home sensor, then change to lower speed and			l and v
Dir. Proximity	Left v	Dir. Top Zero	Right v
Vel. Proximity [mm/	20,000 🗘	Vel. Index [mm/s]	5,000 🗘
Home Offset [mm]	0,000		

In Brushless motors, there are three methods for finding the zero position:

6.3.1.1. Index Signal Only:

The motor rotates until the zero-encoder signal is reached; the sense of rotation of the search is based on what is set in the window:

Dir. Top Zero	Left	- ~)
---------------	------	-------

Where Left corresponds to clockwise rotation and Right to counter clockwise.

Search velocity is set in the window:

Vel. Index [mm/s]	(0.500	÷
		~

6.3.1.2. Near Home Sensor Only

The motor rotates until the zero-limit sensor is reached; the sense of rotation of the search is based on what is set in the window:

Dir. Proximity	(Left	~)

Where Left corresponds to clockwise rotation and Right to counter clockwise.

Search velocity is set in the window:

Vel.	Proximity [mm/s]	(1.000

6.3.1.3. Near Home sensor, then change to lower speed and search index

The motor rotates until the zero-limit sensor is reached; once this is identified, the zero-encoder search will start. The sense of rotation of the search is based on what is set in the window:

Dir. Proximity	Left v	Dir. Top Zero		_eft v
Where Left correspond Search velocities are se	ds to clockwise rotation to clockwise rotation to clockwise rotation the state of t	on and Right to counte e following windows:	r clockwise.	
Vel. Proximity [mm/s]	1.000 🗘	Vel. Index [m	.m/s] (0.	.500 🗘
6.3.2. Stepper N	lotors			
HOMING	PARAMETERS			
Dir. Proximity	Left v			
Vel. Proximity [r	mm/ (20,000)	Vel. Final [mm/s]	5,000 🗘)
Home Offset [m	nm] (0,000 ^			

There is only one zero method in Stepper motors and it is based on the zero-limit sensor; the method is described as follows: the motor rotates searching the zero-limit sensor and the sense of rotation of the search is based on what is set in the window.

Operation and maintenance instructions for driver configurator QSet

	Dir. Proximity	Left	~
Search velocity is set in th	e window:		
	Vel. Proximity [mm/s]	100.000	Ĵ
Onco dotoctod the limit so	near the motor stone on	d changes re	tation sonso until the limit sor

Once detected the limit sensor, the motor stops and changes rotation sense until the limit sensor is no longer engaged.

In this case, velocity for the new zero search will be set in the window:

Vel. Fin	al [mm/s]	(1.000
		(1.000

It is important that the final search velocity is very low in order to ensure high accuracy of zero.

6.4. Set Digital Output

SET DIGITAL OUTPUT

OUTPUT 1	Busy	~	OUTPUT 2	Ready	~
OUTPUT 3	Position Completed	~	OUTPUT 4	Homing Completed	~

You can configure 4 NPN type output signals. For each output, you can set:

- Busy: the motor is moving therefore it can't receive more movement commands.
- Ready: the motor is stationary and is ready to receive new commands.
- Alarm: every alarm that occurs in the drive will activate this output.
- Position Completed: indicates when the set position is reached.
- Homing Completed: indicates when the Homing operation is completed.

Once Setup operations are completed, save the drive data by using the special icons:

In particular:

Save data in the PC in the drive memory.

Retrieve data previously saved in the drive memory making it available to the PC.

Restore the USB connection to the Driver.

7. Menage

In the Menage page, you will find the motion operational commands, in particular:

7.1. Servo ON and Servo OFF

Servo OFF	
Servo ON	

By clicking on the switch with the mouse, you can change the status from Servo OFF to Servo ON.

ATTENTION! The Servo ON status is possible only if the enable hardware selection is enabled (input IN9 Pin 9 for Brushless drives and input X3 Pin 10 for Stepper drives).

7.2. Homing

By clicking on the Homing icon with the mouse, the Homing procedure previously set in the Setup will begin. ATTENTION!! The Servo must be found in the ON status.

7.3. STOP

If the motor is in motion, this will stop by clicking on the STOP icon.

7.4. Programs

PR	ROGRAM	S					Cycle	⊳	\rightarrow	
A	dd new	Ţ								
PRO	G TYPE COMMAND		FORCE [N]	POSITION [mm] max 100	VELOCITY [mm/ s]	ACC [mm/s²] max 7000	DEC [mm/s²] max 7000			
1	Absolute	Ŷ	0,000	0,000	0,000	0,000	0,000	+	\triangleright	
2	Absolute	Ŷ	0,000	0,000	0,000	0,000	0,000	+	\triangleright	
3	Absolute	Ŷ	0,000	0,000	0,000	0,000	0,000	+	\triangleright	
4	Absolute	Ŷ	0,000	0,000	0,000	0,000	0,000	+	\triangleright	
5	Absolute	Ŷ	0,000	0,000	0,000	0,000	0,000	+	\triangleright	
6	Absolute	Ŷ	0,000	0,000	0,000	0,000	0,000	+	\triangleright	-
7	Absolute	~	0,000	0,000	0,000	0,000	0,000	+	\triangleright	-

Programs are the table that contains all command lines; the table is directly editable and, in

order to easily enter data, you can use the Add New command. By clicking on the symbol, + you can expand the notes line in order to read its content.

By clicking on the symbol, [▶] you can run the command and therefore move the actuator. BEFORE RUNNING THE COMMAND; MAKE SURE THAT NO ORGANS, THINGS OR PEOPLE CAN BE DAMAGED OR HARMED BY THE MOTION.

7.5. **ADD NEW**

Add new

With the Add new command, you can enter motion data and their position in the command lines of the table. In particular, by clicking on the Add new icon with the mouse, the following image will be displayed:

Operation and maintenance instructions for driver configurator QSet

Date 18/05/17

Digital Input		PROG.	(1
Prafile	O High Performance	O Best Position	O Long Life
TYPE COMMAND	(Pos. Absolute 👻	POSITION [mm] max 200	0.000 ()
	0.000	VELOCITY [mm/s] max 133	(10.000 🗘
SCC [mm/s ¹] nax 1000	(10.000 🗘	DEC (mm/s²) max 1000	(10.000 🗘
Notes			
	Cancel	Add new	

Where

PROG	(1	~
r no di	<u> </u>	~)

defines the line in the table and can be modified by using the Up and Down arrows or by simply typing the desired line number

Digital Input • • • • • • •

The "Digital input" icon expresses the combination of the inputs that must be activated depending on the value of the selected program line (see table in the SETUP chapter, paragraph Operation Mode: Digital). The least significant input will be seen on the right and the most significant on the left.

EXAMPLE:

Program Line 1

Digital Input 🔹 🔶	• • • • • •	PROG.	1)
Program Line 25				
Digital Input 🔹 🔶	• • • • • •	PROG.	25	(
7.6. Type Comman	d			
	TYPE COMMAND	Pos. Absolute v		
The command type can be:				
Absolute				
Relative				
• Force Command.				

• Abs pos. + stop

7.6.1. Absolute

TYPE	Pac Absoluto	
COMMAND	FOS. ADSOIUTE	Ď

POSITION	[mm]
max 200	

```
200.000
```

This means that the value expressed is absolute compared to the zero position, therefore if the absolute value is set at 200 mm, the actuator will move 200 mm with respect to the zero position.

TYPE COMMAND	Pos. Absolute 🗸	POSITION [mm] max 200	30.000 🗘
-----------------	-----------------	--------------------------	----------

If the absolute value is set at 30 mm, the actuator will move -170 mm compared to the previous value, which means it will move 30 mm from the zero position.

7.6.2. Relative

TYPE COMMAND	Pos. Relative	~	POSITION [mm] max 200	30.000	Ĵ
-----------------	---------------	---	--------------------------	--------	---

It means that the movement is relative to the position where the actuator is found, therefore, if you run an absolute movement of 200 mm, and then you set up a relative motion of 30 mm, the actuator will be moved to a value of 230 mm. Every time the relative value is selected, it will be added with respect to its current position at that moment.

7.6.3. Force Command

TYPE COMMAND	Force	~
FORCE [N] max 272	0.000	Ĵ

Force command is measured in Newton and the maximum settable value (which depends on the type of motor and actuator selected) is shown on the side of the settings window. Force command is a temporary command, i.e. it is limited in time; this in order not to enable the motor/drive thermal protection systems. In particular, the time value depends on the value set and, more precisely, the maximum settable value is applied to a value no greater than 1.5 sec. This time value will increase by reducing the force value. The force value requires velocity and acceleration/deceleration settings as well.

FORCE COMMAND OF IS NOT PROVIDED IN STEPPER MOTORS.

7.6.4. Abs pos. + stop (Comando con Stop) (only for brushless motors)

You can run a line command where the motion stop could be different from the target position, but an external signal can to block the movement.

For example, could be possible to set a comment line as showed below:

	K
C	AMOZZI

PROG	COMMAND	FORCE [N] max 1087	POSITION [mm] max 100	VELOCITY [mm/s] max 375	ACC [mm/s²] max 7000	DEC [mm/s²] max 7000		
1	Abs Pos.+Stop 🗸	0.000	100.000	375.000	1000.000	1000.000	+	\triangleright

If the stop input doesn't become ON, the actuator reach the final position (100 mm), but if the input stop became ON before the actuator reach the final position, the actuator stop the movement using the setted deceleration value.

About the Brushless motor the input stop is the IN7 input.

NOTE: with the stepper driver DRCS is possible to stop the movements by using the stop input (pin 6 on "Proximity" connector or pin2 on "I/O 25 poles" connector).

7.6.5. Velocity, Acceleration, Deceleration

For each command line, you can set the velocity, acceleration and deceleration in addition to its position; the maximum settable values are shown next to the respective setting window, and are related to the type of motor and actuator set; these values also refer to the reduction ratio set, therefore indicating the actual movement of the actuator.

To facilitate data entry, three easily settable configurations were created.

7.6.6. Profile

Profile O Best Position High Performance O Long Life 7.6.6.1. High Performance Profile High Performance VELOCITY [mm/s] 750.000 max 750 ACC [mm/s²] DEC [mm/s²] 7000.000 7000.000 max 7000 max 7000

With High Performance, you can set the maximum velocity, acceleration and deceleration settable for the device.

7.6.6.2. Best Position

Profile		Best Position	
		VELOCITY [mm/s] max 750	750.000 🗘
ACC [mm/ max 7000	s ²] (7000.000)	DEC [mm/s²] max 7000	2030.000 🗘

With Best Position, you can set maximum velocity and maximum acceleration that can be applied to the device, while deceleration is reduced by 50% so as to be brought in position with greater accuracy therefore reducing the possible over shots.

7.6.6.3. Long life

Profile			Score Long Life
		VELOCITY [mm/s] max 750	375.000 🗘
ACC [mm/s²] max 7000	2030.000 🗘	DEC [mm/s²] max 7000	2030.000 🗘

With Long Life, velocity, acceleration and deceleration are reduced by 50% over the maximum acceptable value, so as to ensure a long product life.

7.6.6.4. Notes

Notes

Comments or reminders can be entered in the notes field in support of reading the program that will be executed.

ACC [mm/s ²]		DEC [mm/s ²]	
max 7000	(1000.000)	max 7000	/000.000
Notes			

The Add new button allows entering the commands in the table and also closes the dialog box, while by pressing Cancel you will close the dialog box without implementing the data entered.

7.6.7. Cycle

			/	
Cycle	(54)
-,		~		

Through the Cycle command, you can enter a series of commands in sequential order from one line to another. To compile a cycle table, you must click on the icon.

c	YCLE >	<
From Step (1)	Delay(ms)	
To Step	Time force(ms)	
Cancel	ОК	

From Step and To Step set the limits of the command lines between which the program will run its cycle; in the example above, you will run the cycles included in program lines 1, 2 and 3 and, with this sequence, these programs will continue to cycle. You cannot change the order of execution of the command lines.

The execution time between a line and the other is defined in the Delay settings.

Delay(ms)	500	Ĵ

It is expressed in mS (1s= 1000 ms)

If a command line consists of a force command, you must also set the time in which the force will remain applied before moving on to the next line.

7.6.8. Status

STA In Ru	TUS	Homed	• R	eady 🔍						
				0	.016mr	n				
-0	י 20	40	ا 60	ا 80	י 100	120	ו 140	160	ו 180	200
0	ит е			TN				PROC	5 0	

The status window displays a series of information that are not editable.

- In particular:
- In run will become lit green while the motor is moving.
- Homed will become lit green when the actuator has reached the homing position.
- Ready will become lit green when the drive is ready to receive commands.
- IN, the input LEDs become dark black when the inputs are in the ENABLED status.
- OUT, the output LEDs become dark black when the outputs are in the ENABLED status.

7.6.9. MANUAL CONTROL

MANUAL CONTROL

Velocity JOG [m	um/s] (10.000	Ste	p [mm] 5.000	Ĵ
		ZERO		\bigcirc

With the manuals controls you can move the actuators clockwise or counter clockwise by acting on their respective icons.

Operation and maintenance instructions for driver configurator QSet

Motion will remain continuous as long as the buttons are pressed.

Use the Step buttons to move the actuators and each time you press the button, you will move the actuator according to the set Step value.

7.6.10. ERRORS

The occurrence of problems is expressed indicating errors that vary if these occur in Brushless motors or Stepper Motors and, in particular:

	Brushless Motor
Alarm Code	Description
1	Temp Over driver input
2	Serial Encoder Comunication Error
3	Driver Fault Event (PWM Disabled)
4	Virtual temp Over (i2T protection)
5	Pos_err > Max Err
6	Analog encoder error
7	5V for encoder card out of range
8	Motor Disconnect
9	Vbus < Vbus_yh_low(SW)
10	Driver over voltage
11	Driver over current (short)
12	Hall sensor error
13	Phase init fail
15	HW inconsistent
16	Current Control Error
18	Try execute of unsupport PDL command
19	Both HW limits are active
20	Left HW limit
21	Right HW limit
22	Vel_err > Vel_err_worn_win

Operation and maintenance instructions for driver configurator QSet

5000003339

Date 18/05/17

23	Pos_err > Pos_err_worn_win
24	Right SW limit
25	Left SW limit
26	Pulse command and homing conflict
27	I2T Warning
28	Home Fail
	Stepper motor
1	Stepper motor motor not configured
1 2	Stepper motor motor not configured homing
1 2 3	Stepper motor motor not configured homing overflow limit
1 2 3 4	Stepper motor motor not configured homing overflow limit undervoltage
1 2 3 4 5	Stepper motormotor not configuredhomingoverflow limitundervoltagethermal
1 2 3 4 5 6	Stepper motormotor not configuredhomingoverflow limitundervoltagethermalovercurrent

8. Adviced

8.1. Auto Tune

AUTO TUNE

WARNING

The actuator will produce low and high frequency vibrations. Before performing the "Auto tune" function make sure that the actuator is in the middle of the stroke. Be careful object in motion.

GAIN Primary_CG	0.30000	(ټ

Execute Autotune

The Auto Tune command allows automatic calibration of the correct parameters to the Driver, depending on the load applied to the actuator.

Before executing Auto Tune, make sure that:

- The driver is on the ON status (see chapter Menage Servo On Servo Off)
- The actuator is approximately at half its run.
- There are no mechanical parts that can collide or break as a result of the oscillations.
- That NO PEOPLE are standing near the actuator.

By pressing the

Execute Autotune

button, the actuator will begin oscillating, initially in low frequency then gradually increasing the oscillation rate.

A dialog box will appear once the test is completed indicating the correct execution of the Auto Tune; resulting parameters will be automatically saved in the driver.

Log in to modify 8.2.

Log in to modify Ô

The command and the password to access "Log in to modify" is of exclusive information of Camozzi personnel.

9. Contacts

Camozzi spa

Società Unipersonale Via Eritrea, 20/I

25126 Brescia - Italy Tel. +39 030 37921 Fax +39 030 2400464 info@camozzi.com www.camozzi.com

Product Certification

National and International Directives, Regulations and Standards productcertification@camozzi.com

Technical assistance

Technical information Product information Special products Tel.+39 030 3792390 service@camozzi.com