

Part 2 General catalogue English

www.rollon.com

WWW.camozzi.ru

When you move. We move____

Rollon S.p.A. was set up in 1975 as a manufacturer of linear motion components. Today Rollon group is a leading name in the design, production and sale of linear rails, telescopic rails and actuators, with headquarters based in Italy and offices and distributors located throughout the world. Rollon products are used in many industries with creative and efficient solutions in a wide range of applications used on a daily basis.

Solutions for linear motion

Linear Rails

Rails with roller bearings Rails with caged ball bearings Rails with recirculating ball bearing

Telescopic Rails Rails with partial/total extension Heavy duty rails Rails for and automated/manual applications

Actuators

Belt driven actuators Ball screw driven actuators Rack and pinion actuators

Core Competencies

- Full range of linear rails, telescopic rails and actuators
- Worldwide presence with branches and distributors
- Fast delivery all over the world
- Large technical know-how for applications

Standard solutions

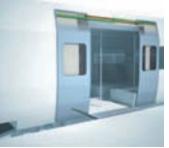
Wide range of products and sizes Linear rails with roller and caged ball bearings Heavy duty telescopic rails Belt or ball screw driven linear actuators Multi-axis systems

Collaboration >

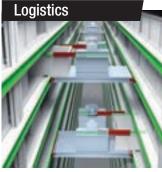
International know-how in several industries Project consultancy Maximizing performance and cost optimization

Applications

Customization


Special products Research and development of new solutions Technologies dedicated to different sectors Optimal surface treatment

Medical

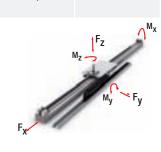


Railway

Special Vehicles

Robotics

Industrial

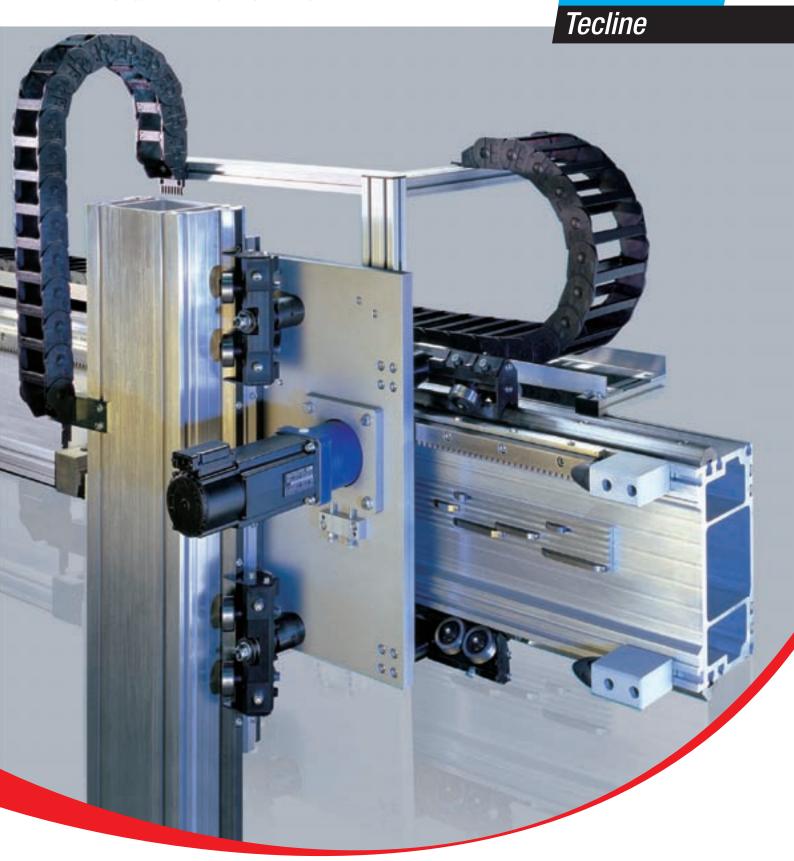

Technical features overview

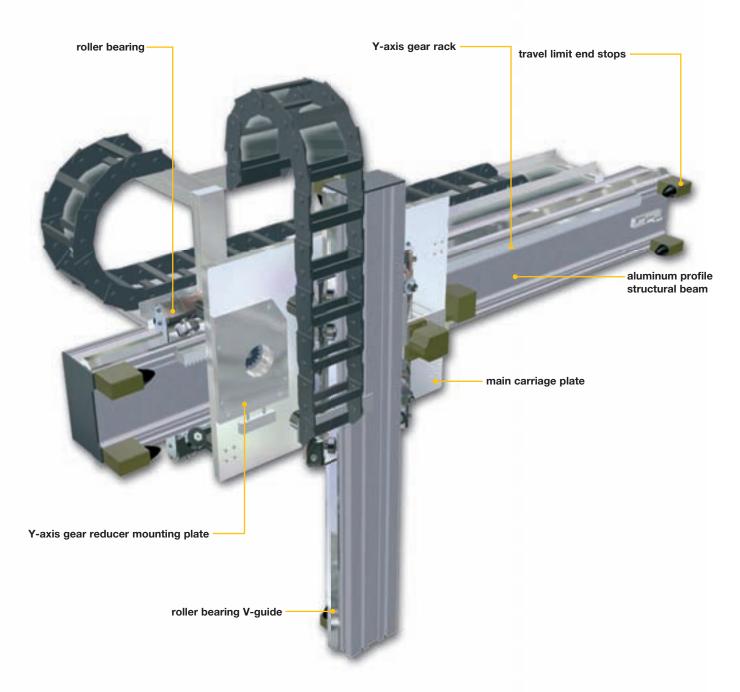
Reference Family Product			Section		Driving				
			Balls	Rollers	Toothed belt	Ball screw	Rack and pinion	Anticorrosion	Protection
TECLINE	A	PAR							
TEGLINE	5	Pas/m Pah/m						•	
		MCS MCH			Our pour			•	
		MCR			000000000000000000000000000000000000000				
	A A	TVS TVH	L.			an Dan		•	
MODLINE		TCS TCH TECH			Ouronooooooooooooooooooooooooooooooooooo			•	
MODLINE		КСН			Openando Openando			•	
	C A	TCR TECR			Onononoooooooooooooooooooooooooooooooo				
		MVS MVH				<u>an [</u> m			
		MTR MVR				an			
	4	ZCS ZCH			000000000000000000000000000000000000000			•	
MODLINE Z	1	ZCR ZCY			Our pool				
		ZMC			Ond pod			•	
0)/0	Carlo Real	SYS1						•	
SYS	A	SYS2							
PRISMATIC RAIL	1992 A	203							

Reported data must be verified according to the application.

For a complete overview about technical data, please consult our catalogues at www.rollon.com. * Longer stroke is available for jointed version. ** When consulting the drawings in this catalog, always reference the legend listed on the same page.

Size	Max. load capacity per carriage [N]			Max. static moment per carriage [Nm]			Max. travel speed	Max. acceleration	Repeatability accuracy	Max. travel or stroke
0120	F _X	Fy	Fz	M _X	м _у	Mz	[m/s]	[m/s ²]	[mm]	(per system) [mm]
170-180-200 220-280-360	10280	29900**	44860**	6900	13160**	8800**	3,5	10	± 0,2	10800*
170-180-200 220-280-360	11600	47350**	47350**	7240	13100**	13100**	3,5	10	± 0,05	10800*
65-80-105	3300	9550	9550	156	800	800	5	50	± 0,1	10100
65-80-105	3300	1500	2950	185	580	220	5	20	± 0,1	10100
170-180 220-280	6000	18300	18300	1300	3200	3200	1	5	± 0,05	4000
100-170 180-200-220 280- 360	8000	28600	28600	4000	5500	5500	5	50	± 0,1	11480
100-150-200	2150	6500	6000	110	680	680	4	50	0,1	5600
100-170 180-200-220 280- 360	8000	25400	25400	4900	5300	5300	7	20	± 0,1	11480
80-105	3000	9550	9550	156	800	800	0,75	5	± 0,05	5150
80-105	3000	1500	2950	185	580	220	0,75	5	± 0,05	5150
60-90-100 170-220	6000	10400	12000	810	2940	4560	4	25	± 0,1	11305
60-90-100 170-180-220	6000	7620	9500	440	1900	1485	4	25	± 0,1	11300
105	250	4500	4500	260	700	700	4	25	± 0,1	2000
50-100 130-180	6100	3950	6317	548	950	668	5	25	± 0,05	7500*
200	6320	6320	6320	700	820	705	5	25	± 0,05	7500*
28-35-55	-	-	15000	-	-	-	5	50	± 0,1	7500*


M L


T L

M L Z

S Y

Our **tecline linear system** range is suitable for the handling of loads from 10 up to 1000 kg, by manufaturing **one or more axis systems** according to the customer **requirements**.

Our main application fields are: **robotics**, **palletization**, production **line**, **logistics** and **manufacturing machines** with Cartesian axis movements.

Our products stand out for their:

- easy and quick assembly
- high quality and competitive performances (profiles up to 12 m)
- reduced and simplified maintenance
- wide range of integrated solutions
- possibility of customised solutions
- **constant** technical **support** and CAD drawings available

Our Tecline linears strong points are:

- Solid beams obtained from aluminium alloy extruded profiles
- High-performance aluminium casting alloy plate and preset for tool assembly
- Adapting plate suitable for any commercial available gearboxes
- Fixed and oscillating roller slides, which can be adjusted through an eccentric bushing
- Without play and sealed rollers with a "for life" lubricating system
- Tempered or induction hardened and machined strong V-shaped steel guide rails
- Adjustable limit stops provided with rubber buffers
- Wide range of accessories for 3 or more axis linears

Linear systems with rack drive and components

INTRODUCTION

Į	Construction characteristics	2
	Instructions for correct assembly	3
	Accuracy - Lubrication	4
	Standard assembly solutions	5
	Sizing template	6
	Technical data sheet	7
	Preliminary selection table (1-2-3 axes)	8
	Special applications with standard modules	9
	Assembly positions and load direction	10
	Complete order code setting	11

12

PROFILES

SINGLE AXES

	PAR 1 - PAS 1	(180)	18
+2	PAR 2 - PASM 2	(170)	20
11	PAR 3 - PASM 3	(200)	22
1	PAR 4 - PASM 4	(200)	24
	PAR 5 - PASM 5	(220)	26
	PAR 6 - PASM 6	(280)	28
	PAR 8 - PASM 8	(280)	30
	PAR10 - PASM 10	(360)	32

DOUBLE AXES

	PAR 1/05 - PAS 1/05	(180/90)	34
65	PAR 2/1 - PASM 2/1	(170/90)	36
1	PAR 3/1 - PASM 3/1	(200/100)	38
25-	PAR 4/1 - PASM 4/1	(200/100)	40
	PAR 5/2 - PASM 5/2	(220/170)	42
101	PAR 6/2 - PASM 6/2	(280/200)	44
100	PAR 6/4 - PASM 6/4	(280/200)	46
	PAR 8/3 - PASM 8/3	(280/200)	48
	PAR 8/6 - PASM 8/6	(280/220)	50
	PAR 10/6 - PASM 10/6	(360/220)	52
	PAR 10/8 - PASM 10/8	(360/280)	54

COMPONENTS

STEEL V-SHAPED GUIDE RAILS	56
PROFILES EQUIPPED WITH ASSEMBLED	
V-SHAPED GUIDE RAILS (order codes)	58
RACKS	59
Adjusting plates for racks	60
PINION GEARS	60
Programmable Automatic Rack Lubrication System	61
Table for selecting maximum operating torque	61
CONNECTION SHAFTS	62
ROLLERS FOR V-SHAPED GUIDE RAILS 28.6X11 AND 35X16	63
ROLLER SLIDES	64
Assembly Studs	69
Order code table for roller slides and pins	71
ANTI-DROP SAFETY SYSTEM	72
Safety lock-pin (shock absorbers)	72

ACCESSORIES

	1
	1
am	
	-
-	
-0	1

PVS for small and medium profiles	73
Capitalize STATYCA, VALYDA LOGYCA for brand recognition	75
Profile fastening brackets	75
Assembly brackets	76
End caps for profiles	78
Cams and cam-holders for micro-switches	79
Threaded inserts for small and medium profiles	80
Threaded inserts for load-bearing profiles	81
Machining code table	83
Index	84

This document replaces all previous editions. Due to the constant progress of our research we reserve the right to modify drawings or features without notice. No part of this catalogue may be reproduced without written permission of the copyright owner. All rights reserved. This catalogue has been accurately checked before publishing. However, we disclaim all responsibility in case of errors and omissions.

Edition 03-2015

Construction characteristics

Multiple-axis linear modules with rack drive

TECLINE linear systems are designed for ROBOTS with one, two or three CARTESIAN AXES and comprise Rollon linear modules with rack drive, in different sizes depending on the load to be translated. Modules with rack drive are suitable for transfer and positioning systems with an extremely low repeatability error and/or for dynamic performance and heavy loads.

They can be equipped / supplied with gearboxes, motors and drivers/drives upon request.

Whatever the application, the configuration can be adapted using the complete order code, within an extensive range of components (energy-chains, guides, micro-switches, lubrication units, etc.) and accessories. Our technical dept. is available to provide assistance with code setting.

Beams

Manufactured with Rollon s extruded and anodised (*) profiles, made of hardened and tempered aluminium alloy Al Mg Si 0.5, quality F25, Rm 245 N/mm, tolerance according to UNI EN 755-9. Profiles are specifically designed by Rollon to create rigid and light structures, suitable for manufacturing linear transfer machines. The guide and rack housings on modules equipped with ball roller slides (PASM family) are milled.

(*) Valyda and Logyca profiles are anodised up to 12 m. Pratyca and Solyda are anodised upon request

Modules can be supplied with head-pieced beams, upon request

Plates

Manufactured with flattened extra-fine rolled sections made of high-performance casting alloy (tensile strength, Rm = 290 MPa, HB = 77). Standard plates can be machined according to drawings (code D).

V-shaped guide rails, PAR version

Made of specially treated high-carbon steel. Standard versions include both hardened and tempered and surface-hardened guides: section 28.6x11, 35x16 and 55x25 (max. length 5,900 mm – 28.6x11, max. length 3,980 mm). Joints bevel cut at an angle of 20°.

Roller slides, PAR version

Body in aluminium alloy G AL SI 91 hardened and tempered according to EN AB 46400, rollers with double rows of angular contact ball bearings, backlash-free, long life lubrication: Ø 30, Ø 40, Ø 52, Ø 62 mm rollers. Adjustable tolerance between rollers and guides. Complete with wiper scraper.

Caged ball roller slides and guide rails, PASM version

Systems are supplied with caged ball roller slides made by leading manufacturers. The cage included in the slides has two purposes: it much the friction between the guide rail and the slide and prolongs their service life, and allows lubrication refills to be performed must less running. The modules and guide rails are suitable for composing sections more than 10 m long. The assembled guide rails have a run parallelism of less than 0.030 mm. The assembly of caged ball roller slides and guide rails normally also involves the machining of the related seat in the profile (code M).

Racks / Toothed pinions

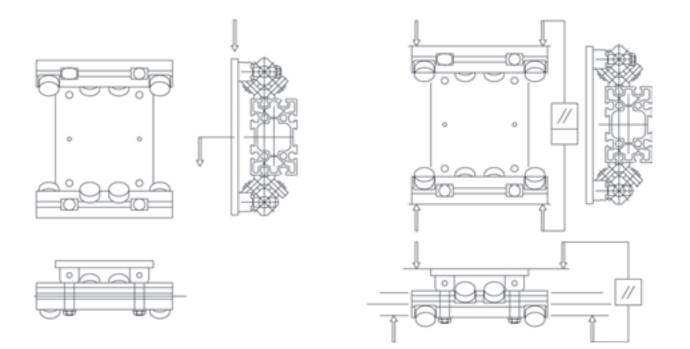
Racks with helical teeth, made of induction-hardened steel and hardened and tempered alloy steel, are available with three different cross-sections: 25x25, 30x30, 40x40 mm.

PAR versions with guide rails and roller slides, assembled with milled, KTD induction-hardened racks with pinions in highperformance tempered and surface-hardened steel (ND). PASM versions with guide rails and caged ball roller slides, are normally assembled with KSD racks and pinions in hardened and tempered RD steel, induction-hardened and fully ground. Highperformance KRD racks are available upon request (Rs>900 MPa): hardened and tempered, induction-hardened, and fully ground (page 59). With RD pinions, KRD racks and continuous lubrication, speeds of up to 5 m/s can be reached.

Stop bumpers

Important: the rubber stop bumpers provided with standard linear models are suitable and regarded as static limit switches. For special needs, such as safety stops if the drive breaks, please specify loads, dynamics, details and discuss the use of specific parts, accessories and devices (reinforced plates and attachments - shock absorbers, safety and/or anti-drop devices, etc.) with our technical dept.

Energy chains or accessories


Energy chains are provided upon request, together with a wide range of accessories. Adjustable brackets and supports are included. Standard sizes are those shown in the catalogue. Energy chains and accessories can be added using the order code on page 11.

Anti-oxidation parts and coatings

Rack modules with anti-oxidation coating are available upon request. Materials with special coatings and lubrication are selected according to the environment of use (food industry, health sector, marine environment, exposure to weather, etc.)

A - Features of the system with roller slides

The translation system consists of a plate to which two roller slides with concentric pins and two with eccentric pins are fixed. The eccentric pins help to adjust the tolerance between the roller slide and the sliding track. Check that the angular position of the rollers is such that they can support the max. working load. See page 65 and 71.

A - Assembly and adjustment of the roller slide.

Check the sense of direction of the roller slide as shown in point A. Check the alignment. Bring the roller slides with concentric pin into contact with the sliding tracks. Adjust the eccentric pins until there is no clearance and the carriage can slide easily along the bar.

IMPORTANT: overloading is easily achieved: this may result in premature wear.

NOTE: always keep friction low: if friction is high, loosen and repeat the adjustment.

No adjustments are required with guide rails and recirculating caged ball linear guides. For high-precision applications, please order low-backlash roller slides.

B - Alignment

All profile anchor supports must be perfectly aligned (with axes side by side: perfectly parallel and coplanar). When mounting the linear axes in parallel, it is necessary to not only verify the parallelism between the linear units themselves, but also the coplanarity of the surfaces of the heads so that the maximum error does not exceed 0.3 mm per meter between the parallel modules and within \pm 0.03 mm compared to the parallelism."

C - Assembly of racks

The axis of the teeth and the guide rails must be parallel within tight tolerances. In the PASM version, the rack seat and the seat of the guide rails for the caged ball roller slide guides are machined together to ensure the correct assembly and positioning accuracy of the axis.

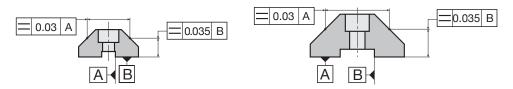
D - Tightening specifications and precautions

Make sure all parts are locked with the appropriate screws and with the right tightening torques.

E - Gearboxes, motors and drives

Supplied upon request. The use of right-angle reduction gears with hollow shaft and key is recommended. With this configuration the gearbox adapting plate is complete with shaft, pinion and step bearing. Otherwise, upon request, the adapting plate can be machined according to customer specifications and the pinion, if obtainable from the standard version. Backlash between the pinion and rack is only adjusted if the gearbox is supplied (or available).

Accuracy


The accuracy of this system is based on the tolerance of:

- 1. guide rails
- 2. rolling parts
- 3. transmission chain (e.g. rack and pinion)

V-shaped guide rails

Made of specially treated high-carbon steel alloy. Their accuracy is shown in the figure below and they are supplied in the following versions: tempered and hardened only, or induction-hardened with a special grinding process, or tempered and hardened.

Hardness: tempered min. 58HRC; tempered and hardened: 240 HB uHB

Rolling parts

Rollers with double rows of angular contact ball bearings to absorb axial force have a low friction coefficient (\pm 0.03) and are complete with sliding sealing rings.

Roller tolerance and radial backlash are in line with DIN 620 parts 2 and 3 (except for the convex external ring R=500 mm), while the load and calculation coefficients comply with DIN ISO 281 and with DIN ISO 76.

Guide rails and caged ball roller slides

As a general rule, these are generally supplied in "normal" accuracy classes. Thus, they are suitable to ensure the appropriate combination of positioning precision, stiffness and self-alignment required for standard industrial applications. Higher levels of accuracy with low backlash are available upon request.

Lubrication

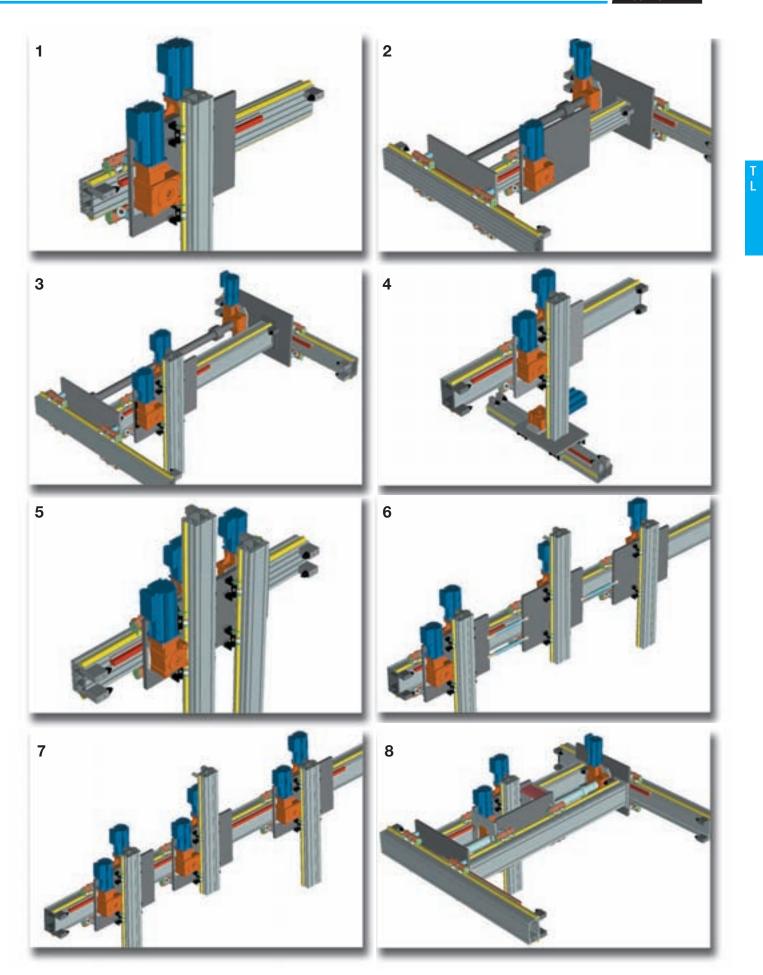
Rack and pinion

These parts must be lubricated regularly with a gear grease (for high working pressures). An automatic, programmable system is available to ensure correct lubrication of the teeth (page 61).

The tangential force and toque values shown in the table on page 61 refer to properly lubricated racks.

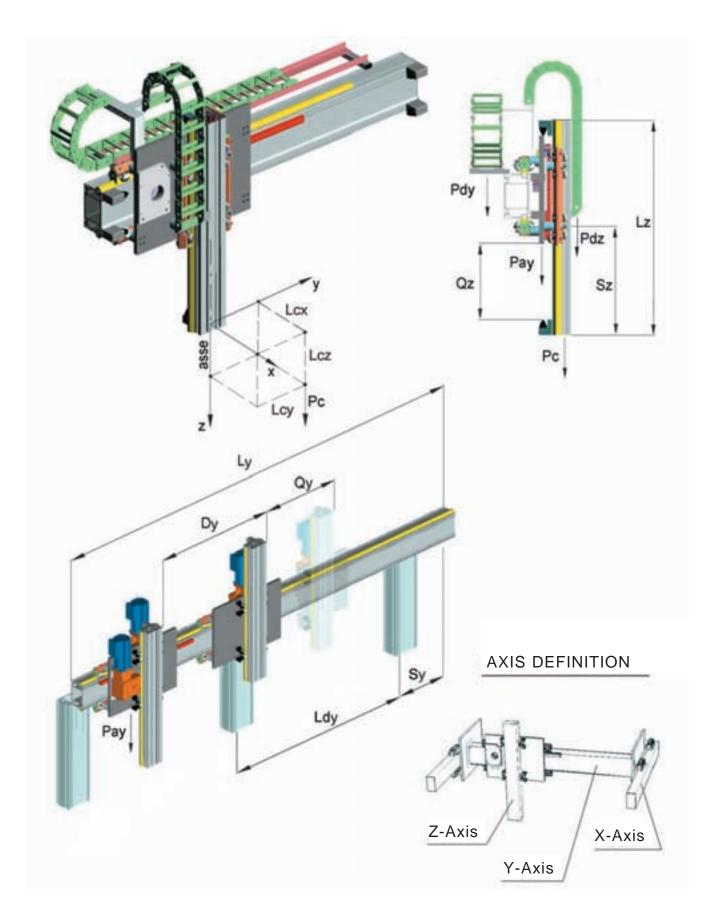
Rollers and roller slides

Roller slides and V-shaped rollers are provided with a permanent lubrication system. If properly used, this eliminates the need for any further maintenance, also considering the average life of handling devices. Do not use solvents to clean rollers or roller slides, as you could unintentionally remove the grease lubricating coat applied to the rolling elements during assembly. However, grease may be added slowly to lithium soap according to DIN 51825 - K3N.


V-shaped guide rails

If properly assembled, with the felt scraper in place, these guides do not require any lubrication, which could attract impurities and have negative consequences.

Guide rails and caged ball roller slides


Due to the cage keeping the ball bearings apart, these units are regarded as permanently lubricated; considering the average life of handling devices, no maintenance is needed before 30,000 Km. For applications where dynamic performance is required, our technical dept. will consider the need for special seals or suitable tanks or lubrication systems.

Standard assembly solutions

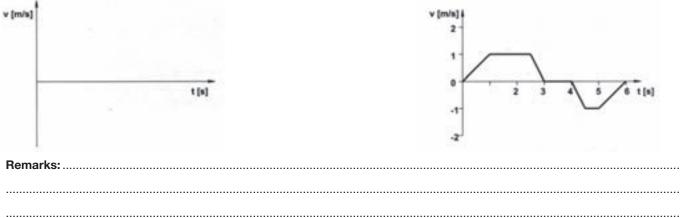
Sizing template

Our **technical department** is available to check sizing calculations. Please fill in the form with all the necessary data and send it to our technical dept., which will recommend the most suitable size according to the forces applied and precision required.

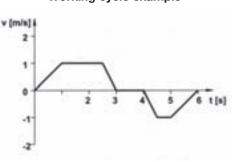
Technical data sheet

For a correct design of the system, please fill the form below and send it to our technical dept.

Date:	.Request n°
Filled in by	
	.Fax
E-mail	


SIZING TEMPLATE

optional data required data

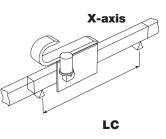

Assembly solutions (see page 5) no		Z-Axis		Y-Axis		X-Axis	
Total length	Lz		Ly		Lx		[mm]
Total working load including EOAT (add Z axis for Y and X axes)	Рс		Ру		Px		[kg]
Equipment weight on carriage (gearbox, cylinder, OPTIONAL)			Pay		Pax		[kg]
Weight distributed on the beam (energy chain)	Pdz		Pdy		Pdx		[kg/m]
Beam supports			n°		n°		
Max. projection (any cantilever, the largest)	Sz		Sy		Sx		[mm]
Span (largest)			Ldy		Ldx		[mm]
Offset load's centre of gravity (X-axis)	Lcx		-				[mm]
Offset load's centre of gravity (Y-axis)	Lcy						[mm]
Offset load's centre of gravity (Z-axis)	Lcz						[mm]
Additional force, if any	F		F		F		[N] +/-
Possible distance between the carriages (see solutions 6 - 7 on page 5)			Dy		Dx		[mm]
Transmission performance	η		•				
Assembly: vertical= 90° - slope = 30° , 45° , 60° - horizontal = 0°	α°						
Stroke	Qz		Qy		Qx		[mm]
Speed	Vz		Vy		Vx		[m/s]
Acceleration	Az		Ay		Ax		[m/s²]
Cycle time	Tz		Ту		Тх		[s]
Positioning accuracy	+/-						
Repeatability	+/-						[mm]
Work environment (temperature and cleanliness)							
Daily working cycles	N°						
Minimum service life requested							[Km]
Working cycle		Wo	orking	cycle e	xamp	le	

.....

.

These tables are useful for making a preliminary selection with load applied in a central position with respect to the plate or profile axis. Z axis length is < 1,600 mm.

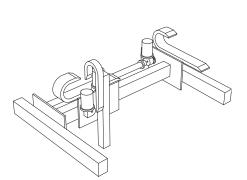
Deflection is computed assuming continuous beams having the same span and concentrated static loads.


								-		
		PA	2X	3X	4X	5X	6X	8X	10X	LC
[kg.]					D	eflection				
×	50		1,4							5000
Sit V	100		1,8							5000
capacity	200		2,7	1,8						5000
g	300			2,3	2,7					5000
g	400				3,3	2,4				5000
load	500					2,8	1,8			5000
Max	600						2	2		6000
Σ	800							2,5	1,8	6000
	1000								2,1	7000

In the following table, select the appropriate X axes according to the load.

N.B. per i PA 8X e 10X verticale compensare il carico.

In the following table	, select the app	ropriate Y-X axes	according to the load.
------------------------	------------------	-------------------	------------------------


-		PA	2/1	3/1	4/1	5/2	6/2	8/3	6/4	8/6	10/6	10/8	LC
[ka.]							D	eflect	ion				
			1,9						A				5000
capacity	100		2,4	1,7	2	1,6							5000
ap	200		◄			-2,2-	- 0, 8-	θ , 8-					5000
							1,6	1,6	1,6				6000
0aC	400								1,9	2	0,9		6000
×	500									2,2	1		6000
Max load	600									2,5	1,2	1,2	6000
~	800											2,2	7000

Y-Z-axes

In the following table, select the appropriate X and Y-Z axes according to the load.

					N	Y-Z-axe	s					
		PA	2/1	3/1	4/1	5/2	6/2	8/3	6/4	8/6	10/6	10/8
	PA	load [kg.]	100	100	100	200	200	300	400	600	600	700
	2X	(200)										
÷.	3X	(300)										
X-axis	4X	(400)										
\times	5X	(500)										
	6X	(600)	4									
	8X	(800)										
	10X	(1000)										

X-Y-Z-axes

NB: The choice of X axis is based upon the actual load, the supporting points, max. deflection and the total weight of the Y-Z axes.

EXAMPLE: selection of 3-axis system with roller slides

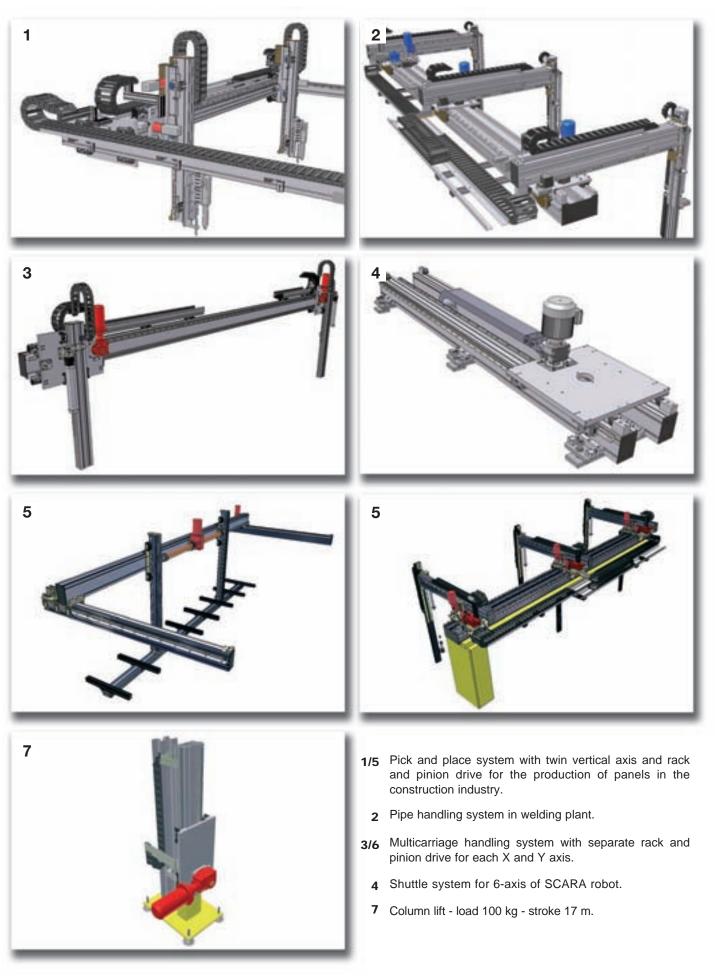
(Please see page 10 and the system pages for the nomenclature)

DATA: Total working load 300 kg, X axis stroke: 5,000 mm, Y axis stroke: 4,000 mm, Z axis stroke: 2,000 mm, support points: 2 By analysing the table of Y-Z axes based on the working load (Pc), profile length (Ly) and deflection, the selection falls on one PA 8/3 (load 300 kg.) system.

Check: $P_{eff} = P_{max}$ (Lz - 1,600)/1,000•q_z = 300-(2,900-1,600)/1,000•35 = 254.5 kg. < di 300 kg (not sufficient).

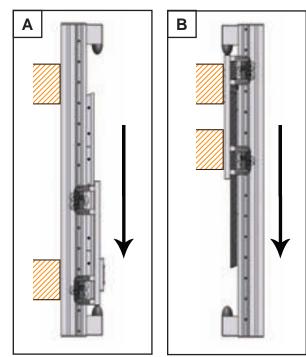
Therefore select the larger size PA 6/4 (max. load capacity 400 kg.)

 $M_{toty+z} PA 6/4 = M_{base} + (q_v^{\bullet} strokeQ_v + q_z^{\bullet} strokeQ_z)/1000 + Pc = 244 + (66^{\bullet}4,000 + 48^{\bullet}2,000)/1,000 + 300 = 904 \text{ kg}.$


 $P_{totx} = M_{tot} PA 6/4 (Y+Z) \cdot 0.66 = 596.6 kg.$

 $Lx = stroke_x + 1,200 approx. = 5,000+1,200 = 6,200 mm$

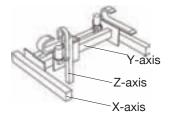
By analyzing the table of X axes based on the load (P_{totx}) profile length (Lx) and deflection, it is possible to select 2 linear axes PA 6X Chosen composition: n°1 PA 6/4 + n° 2 PA 6X

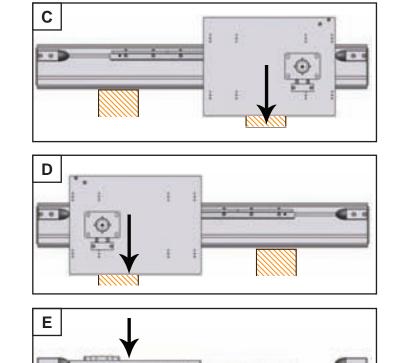

Perform a final analysis by computing the deflection based on the actual size of the spans. Our technical dept. is at your complete disposal to help you examine the most suitable applications for your requirements and help you ...with motor and drive sizing for the whole project.

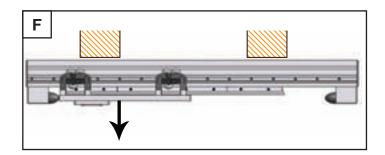
Special applications with standard modules

Assembly positions and load direction

For single-axis roller versions

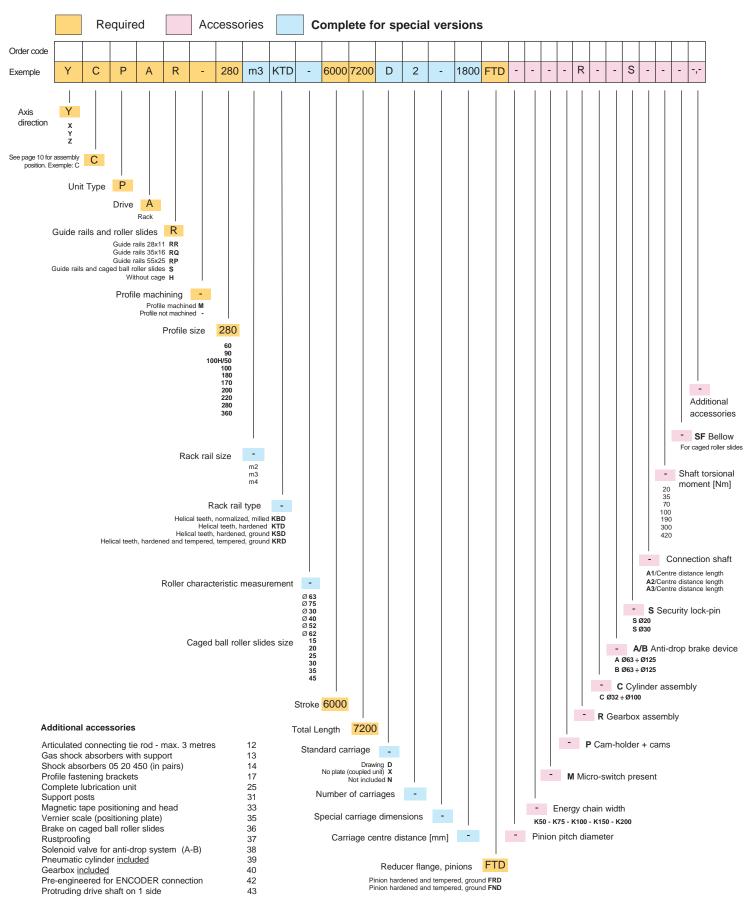



KEY:


Direction of load

Linear axis support

Axis orientation position X - Y - Z:

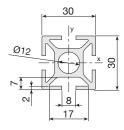


Simplified code setting of the module

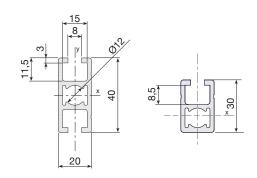
EXAMPLE		Ρ	Α	S	М	5	/ 2	/ mm/mm/
SERIES	Р							
SLIDE	A= rack							
DRIVE	R= Roller slides S= caged ball linear g	uides -	high perfo	ormance				
PROFILE MACHINING	M= profile with machined guide plane and rack plane							
SIZE OF X-AXIS	See catalog from page	See catalog from page 18 to page 55						
SIZE OF Z-AXIS	See catalogue from pa "X"= Z-axis not provid	•	to page 58	5				
STROKE / Length	"mm" = X-axis / Y-axis	/ Z-axi	S					
ACCESSORY CODES	Various accessory co	des						

Order code

- The standard system includes all components illustrated in the drawings (profiles, gearbox plate, energy chain support, profile end caps, safety stops), except the energy chain.

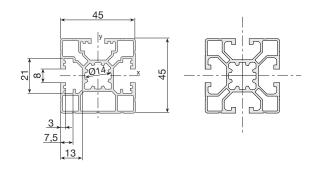

- Pinion, reduction units, gearboxes and compensating cylinders supplied by the customer can be fitted upon request.

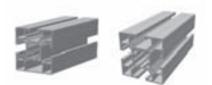
- Machining to specifications (drilling, hollowing, spot-facing, etc.) on the free surfaces of the plates.

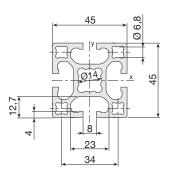

• Customized applications (optional: systems with several plates, machining to drawing specifications, structural inspections for special loads, Cartesian robots with three or more axes, etc.)

Profile specifications (see machining code table on page 83)

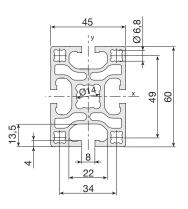
Small profiles

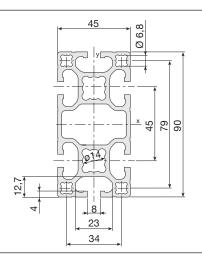



MB 1-1 (30x30)		
Weight	1.2	kg/m
Max. length	6	m
Moment of inertia Ix	39,000	mm⁴
Moment of inertia ly	39,000	mm⁴



	E01-7 (20x40)	E01-8(20x30)	
Weight	1.3	0.75	kg/m
Max length	6	6	m
Moment of inertia Ix	22,000	24,600	mm⁴
Moment of inertia ly	46,000	15,700	mm⁴




	E01-6 (45x45) light	E01-11	
Weight	1.4	1.4	kg/m
Max. length	6	6	m
Moment of inertia Ix	137,000	103,500	mm ⁴
Moment of inertia ly	138,000	103,500	mm ⁴

E 01-1 (45x45)		
Weight	2	kg/m
Max. length	6	m
Moment of inertia Ix	155,000	mm ⁴
Moment of inertia ly	155,000	mm ⁴

60

614

22

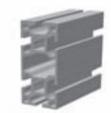
Ŧ

Ð

4

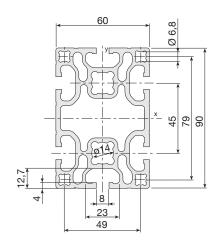
Ø 6,8

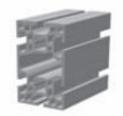
09


Æ

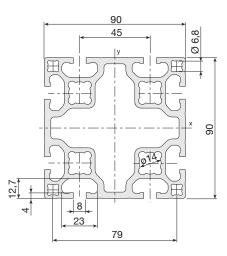
5

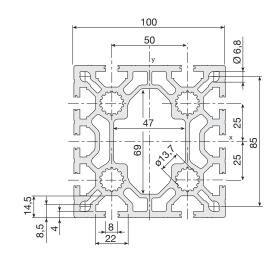
Œ

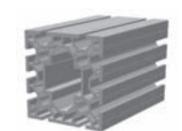

E 01-2 (45x60)		
Weight	2.7	kg/m
Max. length	6	m
Moment of inertia Ix	340,000	mm ⁴
Moment of inertia ly	208,000	mm ⁴

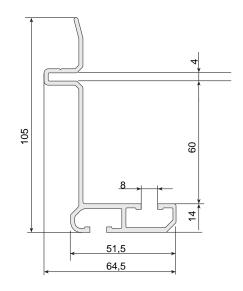


3.5	kg/m
6	m
1,055,000	mm⁴
284,000	mm ⁴
	6 1,055,000

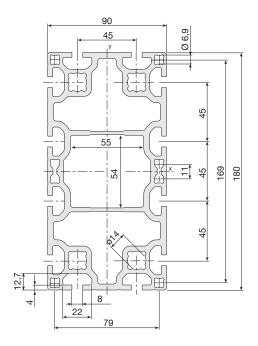

F 01-1 (60x60)		
Weight	3.6	kg/m
Max. length	6	m
Moment of inertia Ix	466,600	mm ⁴
Moment of inertia ly	466,600	mm ⁴

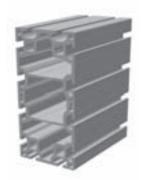

F 01-2 (60x90)		
Weight	4.6	kg/m
Max. length	6	m
Moment of inertia Ix	1,450,500	mm ⁴
Moment of inertia ly	641,600	mm ⁴

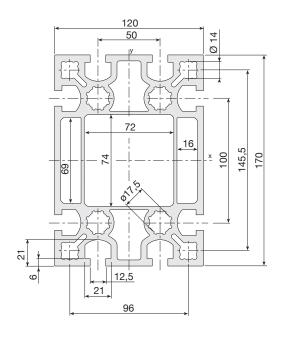

Medium profiles

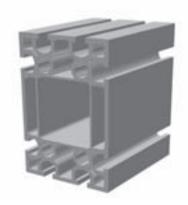


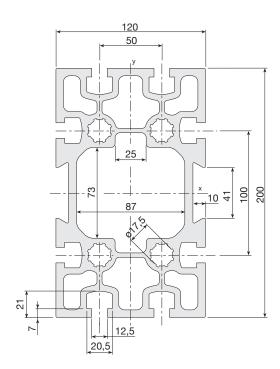
E 01-4 (90x90)		
Weight	6	kg/m
Max. length	6	m
Moment of inertia Ix	2,027,000	mm⁴
Moment of inertia ly	2,027,000	mm⁴
Polar moment of inertia Iz	1,100,000	mm⁴
Bending section modulus Wx	45,040	mm³
Bending section modulus Wy	45,040	mm ³

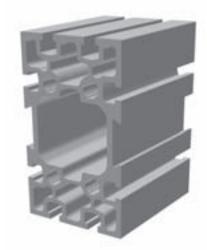


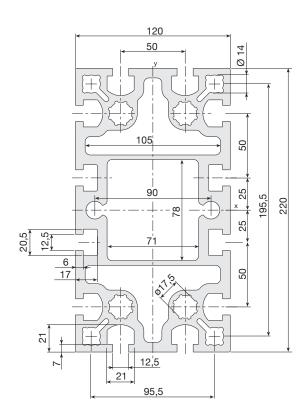

MA 1-5 (100x100)		
Weight	9.5	kg/m
Max. length	6	m
Moment of inertia Ix	3,800,000	mm⁴
Moment of inertia ly	3,650,000	mm⁴
Polar moment of inertia Iz	1,900,000	mm⁴
Bending section modulus Wx	76,000	mm³
Bending section modulus Wy	73,000	mm³

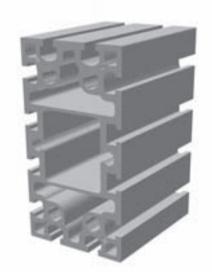

7400568 energy chain support profile					
Weight 1.3 kg/m					
Available length 6 m					

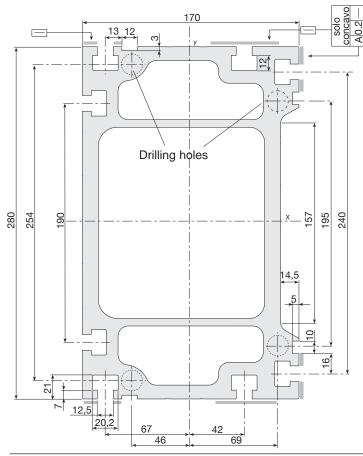


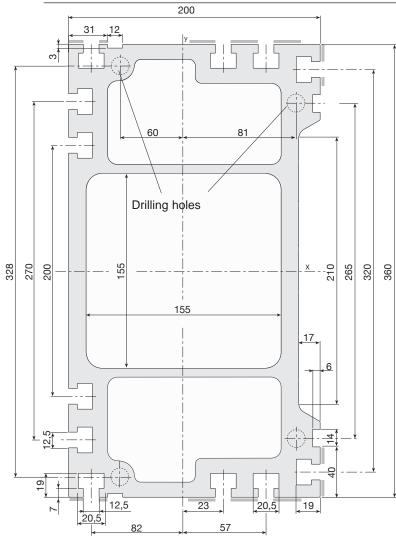

E 01-5 (90x180)		
Weight	approx. 12	kg/m
Max. length	8	m
Moment of inertia Ix	15,180,000	mm ⁴
Moment of inertia ly	4,420,000	mm ⁴
Polar moment of inertia Iz	4,400,000	mm ⁴
Bending section modulus Wx	168,670	mm³
Bending section modulus Wy	98,220	mm³

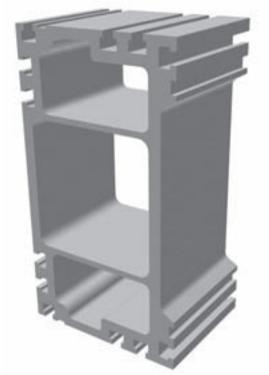

Load bearing profiles

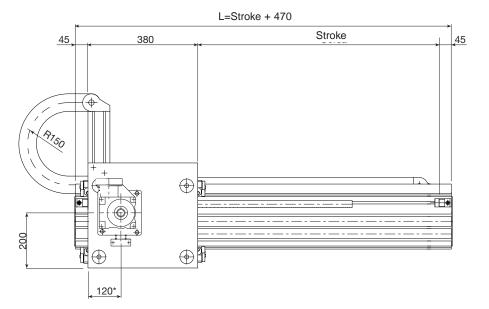

STATYCA (120x170)	code 202.1753	
Weight	17	kg/m
Max. length	12	m
Moment of inertia Ix	20,360,000	mm ⁴
Moment of inertia ly	10,200,000	mm ⁴
Polar moment of inertia Iz	8,460,000	mm ⁴
Bending section modulus Wx	239,500	mm³
Bending section modulus Wy	170,000	mm³

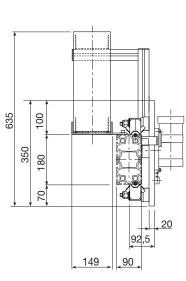



VALYDA (120x200)	code 202.1146	
Weight	21	kg/m
Max. length	12	m
Moment of inertia Ix	32,980,000	mm⁴
Moment of inertia ly	12,980,000	mm⁴
Polar moment of inertia Iz	10,500,000	mm⁴
Bending section modulus Wx	329,800	mm³
Bending section modulus Wy	215,130	mm³
Only anodized up to	9	m


* Dovetail inserts available in various size


LOGYCA (120x220)	code 202.2184	
Weight	25	kg/m
Max. length	12	m
Moment of inertia Ix	46,550,000	mm ⁴
Moment of inertia ly	15,650,000	mm⁴
Polar moment of inertia Iz	14,300,000	mm ⁴
Bending section modulus Wx	423,182	mm ³
Bending section modulus Wy	260,833	mm³
Only anodized up to	9	m

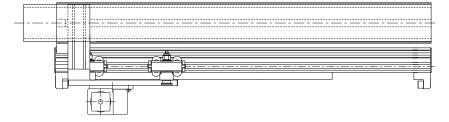

PRATYCA (170x280)	code 202.1147		
Weight	40	kg/m	
Max. length	12	m	
Moment of inertia Ix	134,103,000	mm ⁴	
Moment of inertia ly	50,288,000	mm⁴	
Polar moment of inertia Iz	72,700,000	mm⁴	
Bending section modulus Wx	957,790	mm³	
Bending section modulus Wy	591,620	mm³	

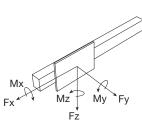


SOLYDA (200x360)	OLYDA (200x360) code 202.0342	
Weight	60	kg/m
Max. length	12	m
Moment of inertia Ix	318,687,200	mm ⁴
Moment of inertia ly	105,533,000	mm⁴
Polar moment of inertia Iz	150,000,000	mm⁴
Bending section modulus (Wx)	1,770,500	mm³
Bending section modulus (Wy)	1,035,300	mm³

PAR 1

P / A / R / R / 180 / Stroke / Length / FND / ...





PC

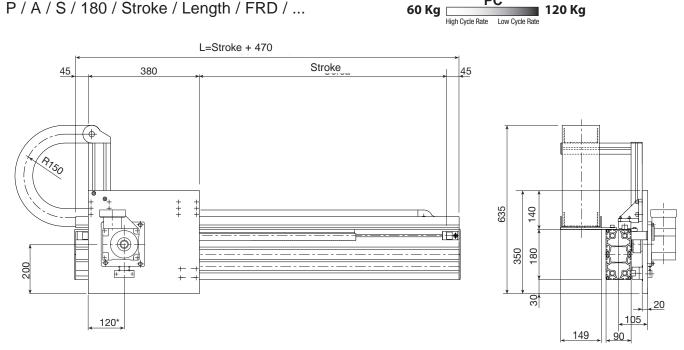
60 Kg

* For indication only, variable according to the gearbox chosen

Performance	X-axis	
Max. load (Pc max) with load on ax	kis (L \leq 1,600 i	mm)
Max. speed	3.5	[m/s]
Max. acceleration	8	[m/s ²]
Repeatability	± 0.2	[mm]
Beam max. length without joint	8,000	[mm]

Recommended max working conditions						
Model	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
PAR 1	490	1,170	1,170	2,700	5,900	5,900
machine acting ir	ues shown a ery. They re ndividually. our technic	efer to max In case of	ide a safety kimum perf peak force	coeffici ormance es acting	ent for a e with e g togeth	utomated ach force er please

Assembly positions and load direction, see page 10


Construction data	X-axis	
Load-bearing beam (see page 15/17)	E01-5	
Rack (tempered, helical teeth: module KTD)	module 2	[mm ²]
Guide rail	28x11 (hardened)	
Translation	4 roller slides with 4 rollers Ø30	
Room available for energy chain	115x45 approx.	[mm ²]
Pinion pitch diameter type ND	44.56 (as an alternative 63.66)	[mm]

Weights	X-axis	
"Base" model (stroke _x =0)	M _{base} = 28	[kg]
Slide (plates + carriages)	M _{slide} = 15	[kg]
Beam (incl. guide rails and rack)	q _X = 19	[kg/m]

Formula:

Module total weight: M_{tot}=M_{base}+(q_x•stroke_x)/1,000 Stroke_x [mm]

P / A / S / 180 / Stroke / Length / FRD / ...

* For indication only, variable according to the gearbox chosen

Performances	X-axis	
Max. load (Pc max) with load on a	axis (L \leq 1,600 r	nm)
Max. speed	3.5	[m/s]
Max. acceleration	10	[m/s ²]
Repeatability	± 0.05	[mm]
Beam max. length without joint	8,000	[mm]

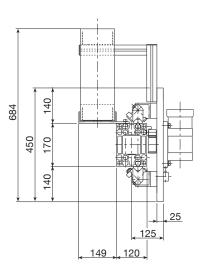
Recommended max working conditions						
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _v [N]	F _z [N]
PAS 1	1,250	3,450	3,450	2,900	16,950	16,950
The valu	es shown a ry. They re	above inclu efer to max	de a safety	coefficie	ent for a	utomated ach force

acting individually. In case of peak forces acting together please consult our technical dept. The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

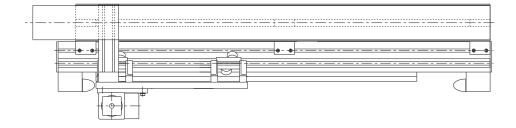
Construction data	X-axis	
Load-bearing beam (see page 15/17)	E01-5	
Rack (tempered, helical teeth, ground: module KSD)	module 2	[mm ²]
Translation: 4 caged ball roller slides and guide rails	Size 20	
Room available for energy chain	115x45 approx.	[mm ²]
Pinion pitch diameter (induction-hardened, ground - RD)	44.56 (as an alternative 63.66)	[mm]

Weights	X-axis	
"Base" model (stroke _x =0)	M _{base} = 27	[kg]
Slide (plates + carriages)	M _{slitta} = 14	[kg]
Beam (incl. guide rails and rack)	q _X = 19	[kg/m]

Formules:


Tecline

PC


P / A / R / Q/ 170 / Stroke / Length / FND / ...



L=Stroke + 900 Stroke 150 150 600 -¢ R15Q ŧ ŧ \$ 226,5 ‡ ŧ ŧ F 110*

* For indication only, variable according to the gearbox chosen

Performance	X-axis	
Max. load (Pc max) with load on ax	kis (L \leq 1,600 r	nm)
Max. speed	3.5	[m/s]
Max. acceleration	10	[m/s ²]
Repeatability	± 0.2	[mm]
Beam max. length without joint	12000	[mm]

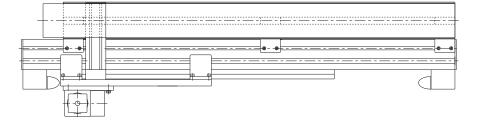
Recommended max working conditions						
Model	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _v [N]	F _z [N]
PAR 2	560	1,350	1,350	5,980	7,000	7,050
machine acting ir	ues shown a ery. They ro ndividually. our technic	efer to max In case of	ide a safety kimum perf peak force	coeffici ormance es acting	ent for a e with ea g togeth	utomated ach force er please

Assembly positions and load direction, see page 10

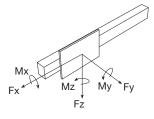
Construction data	X-axis	
Load-bearing beam (see page 15/17)	Statyca	
Rack (tempered, helical teeth: module KTD)	module 3	[mm ²]
Guide rail	35x16 (hardened and polished)	
Translation	4 roller slides with 2 rollers Ø40	
Room available for energy chain	115x45	[mm ²]
Pinion pitch diameter type ND	63.66 (as an alternative 89.13)	[mm]

Weights	X-axis	
"Base" model (stroke _x =0)	M _{base} = 59 approx.	[kg]
Slide (plates + carriages)	M _{slide} = 29 approx.	[kg]
Beam (incl. guide rails and rack)	q _X = 31 approx.	[kg/m]

Formula:


 $\label{eq:module_total_stroke_x} \mbox{Module total weight: $M_{tot}=M_{base}$+$($q_x$-stroke_x$)/1,000 Stroke_x [mm]} $$$

PASM 2 PC P / A / S / M / 170 / Stroke / Length / FRD / ... 80 Kg Z50 Kg L=Stroke + 900 Stroke 150 150 600 4 + + + 140 684 14


* For indication only, variable according to the gearbox chosen

110*

226,2

++

149

Tecline

tt

25

125

120

Performances	X-axis	
Max. load (Pc max) with load on a	axis (L \leq 1,600 r	nm)
Max. speed	3.5	[m/s]
Max. acceleration	10	[m/s ²]
Repeatability	± 0.05	[mm]
Beam max. length without joint	12000	[mm]

Recommended max working conditions						
Model	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _v [N]	F _z [N]
PASM2	1,170	3,450	3,450	5,980	16,950	16,950
The valu	es shown a	above inclu	de a safety	coefficie	ent for a	utomated

-

170 450

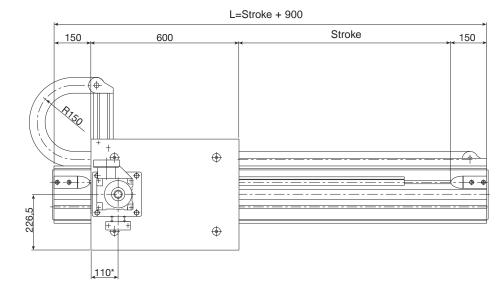
140

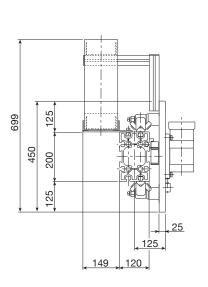
machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept. The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Construction data	X-axis	
Load-bearing beam (see page 15/17)	Statyca	
Rack (tempered, helical teeth, ground: module KSD)	module 3	[mm ²]
Translation: 4 caged ball roller slides and guide rails	Size 20	
Room available for energy chain	115x45	[mm²]
Pinion pitch diameter (induction-hardened, ground - RD)	63.66 (as an alternative 89.13)	[mm]

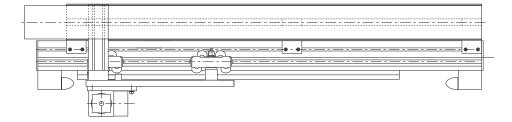
Weights	X-axis	
"Base" model (stroke _x =0)	M _{base} = 57 approx.	[kg]
Slide (plates + carriages)	M _{slitta} = 29 approx.	[kg]
Beam (incl. guide rails and rack)	$q_X = 29$ approx.	[kg/m]

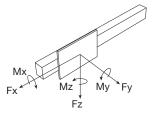
Formula:


Module total weight: Mtot=Mbase+(qx•strokex)/1,000 Strokex [mm]


TL-21

PAR 3


P / A / R / Q / 200 / Stroke / Length / FND / ...



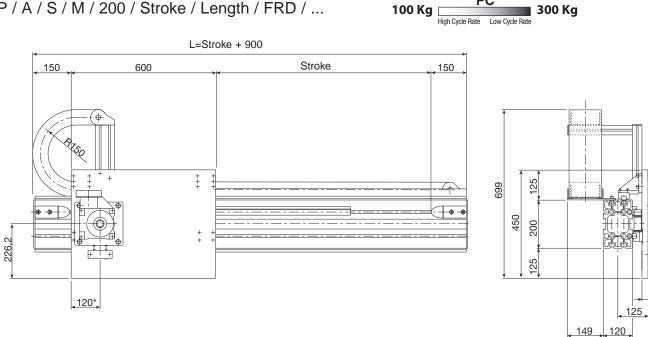
* For indication only, variable according to the gearbox chosen

Performance	X-axis	
Max. load (Pc max) with load on a	kis (L \leq 1,600 r	mm)
Max. speed	3	[m/s]
Max. acceleration	7	[m/s ²]
Repeatability	± 0.2	[mm]
Beam max. length without joint	12000	[mm]

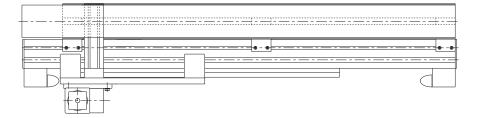
Recommended max working conditions						
Model	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
PAR 3	1,115	2,685	2,685	6,100	14,100	14,100
The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.						

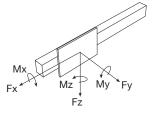
Assembly positions and load direction, see page 10

Construction data	X-axis	
Load-bearing beam (see page 15/17)	Valyda	
Rack (tempered, helical teeth: module KTD)	module 3	[mm ²]
Guide rail	28x11 (hardened and polished)	
Translation	4 roller slides with 4 rollers Ø40	
Room available for energy chain	115x45	[mm ²]
Pinion pitch diameter type ND	63.66 (as an alternative 89.13)	[mm]


Weights	X-axis	
"Base" model (stroke _x =0)	M _{base} = 70 approx.	[kg]
Slide (plates + carriages)	M _{slide} = 36 appox.	[kg]
Beam (incl. guide rails and rack)	q _X = 35 approx.	[kg/m]

Formula:


Module total weight: $M_{tot}=M_{base}+(q_x \circ stroke_x)/1,000$ Stroke_x [mm]


PC

P / A / S / M / 200 / Stroke / Length / FRD / ...

* For indication only, variable according to the gearbox chosen

Performances	X-axis	
Max. load (Pc max) with load on a	xis (L \leq 1,600 r	nm)
Max. speed	3	[m/s]
Max. acceleration	7	[m/s ²]
Repeatability	± 0.05	[mm]
Beam max. length without joint	12000	[mm]

Recommended max working conditions						
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _v [N]	F _z [N]
PASM3	1,280	3,500	3,500	6,100	16,950	16,950
The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force						

acting individually. In case of peak forces acting together please consult our technical dept. The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

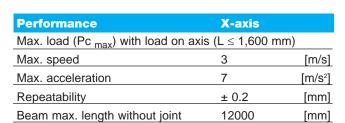
Construction data	X-axis	
Load-bearing beam (see page 15/17)	Valyda	
Rack (tempered, helical teeth, ground: module KSD)	module 3	[mm ²]
Translation: 4 caged ball roller slides and guide rails	Size 20	
Room available for energy chain	115x45	[mm ²]
Pinion pitch diameter (induction-hardened, ground - RD)	63.66 (as an alternative 89.13)	[mm]

Weights	X-axis	
"Base" model (stroke _x =0)	M _{base} = 68 approx.	[kg]
Slide (plates + carriages)	M _{slitta} = 36 approx.	[kg]
Beam (incl. guide rails and rack)	$q_X = 33$ approx.	[kg/m]

Formula:

Module total weight: Mtot=Mbase+(qx•strokex)/1,000 Strokex [mm]

25


PAR 4

P / A / R / P / 200 / Stroke / Length / FND / ...

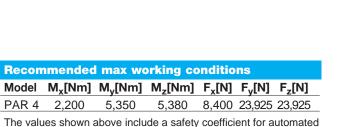
L=Stroke + 950 Stroke 150 650 150 4 \hat{S}_{O} \oplus Ŧ 213 \oplus 115*

* For indication only, variable according to the gearbox chosen

Model M_x[Nm] M_y[Nm] M_z[Nm] F_x[N] F_y[N] F_z[N] 2,200 5,350 5,380 8,400 23,925 23,925 PAR 4 The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please

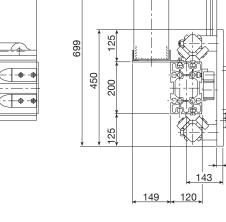
consult our technical dept.

•


Assembly positions and load direction, see page 10

Construction data	X-axis	
Load-bearing beam (see page 15/17)	Valyda	
Rack (tempered, helical teeth: module KTD)	module 4	[mm ²]
Guide rail	55x25 (hardened and polished)	
Translation	4 roller slides with 4 rollers Ø52	
Room available for energy chain	115x45	[mm ²]
Ø Pinion pitch diameter type ND	76.39 (as an alternative 106.10)	[mm]

Weights	X-axis	
"Base" model (stroke _x =0)	M _{base} = 96 approx.	[kg]
Slide (plates + carriages)	M _{slide} = 48 approx.	[kg]
Beam (incl. guide rails and rack)	q _X = 48 approx.	[kg/m]


Formula:

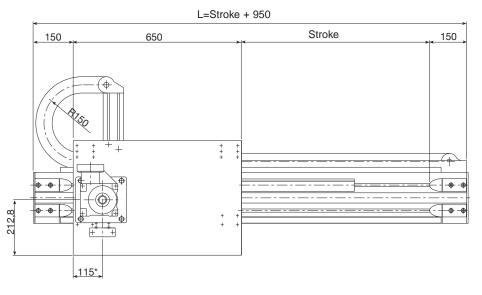
Module total weight: Mtot=Mbase+(qx•strokex)/1,000 Strokex [mm]

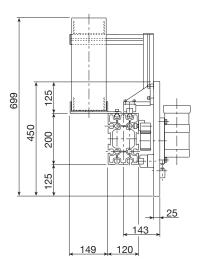
M

Fx

PC 100 Kg [🛯 400 Kg High Cycle Rate Low Cycle Rate

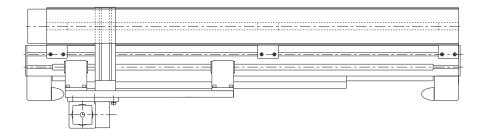
25

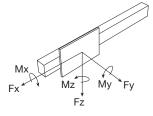

Μz


Fż

Мy

P / A / S / M / 200 / Stroke / Length / FRD / ...





Tecline

* For indication only, variable according to the gearbox chosen

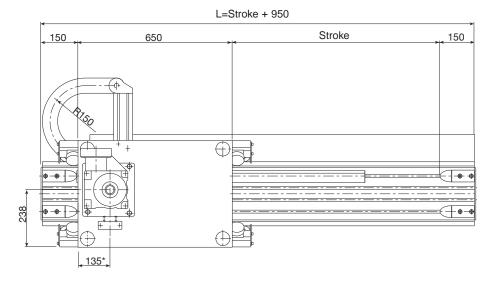
Performances	X-axis	
Max. load (Pc max) with load on	axis (L ≤ 1,600 ı	mm)
Max. speed	3	[m/s]
Max. acceleration	7	[m/s ²]
Repeatability	± 0,05	[mm]
Beam max. length without joint	12000	[mm]

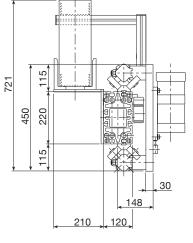
Recommended max working conditions						
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _v [N]	F _z [N]
PASM4	1,850	5,200	5,200	8,400	24,100	24,100
PASM4 1,850 5,200 5,200 8,400 24,100 24,100 The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force						

acting individually. In case of peak forces acting together please consult our technical dept. The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

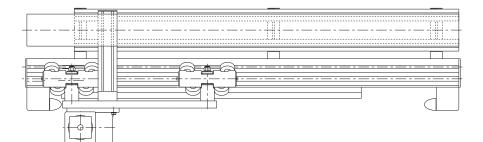
Construction data	X-axis	
Load-bearing beam (see page 15/17)	Valyda	
Rack (tempered, helical teeth, ground: module KSD)	module 4	[mm ²]
Translation: 4 caged ball roller slides and guide rails	Size 25	
Room available for energy chain	115x45	[mm²]
Pinion pitch diameter (induction-hardened, ground - RD)	76.39 (as an alternative 106.10)	[mm]

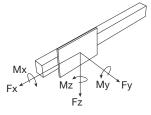
Weights	X-axis	
"Base" model (stroke _x =0)	M _{base} = 80 approx.	[kg]
Slide (plates + carriages)	M _{slitta} = 38 approx.	[kg]
Beam (incl. guide rails and rack)	$q_X = 40$ approx.	[kg/m]


Formula:


Module total weight: Mtot=Mbase+(qx•strokex)/1,000 Strokex [mm]

PAR 5


P / A / R / P / 220 / Stroke / Length / FND / ...



* For indication only, variable according to the gearbox chosen

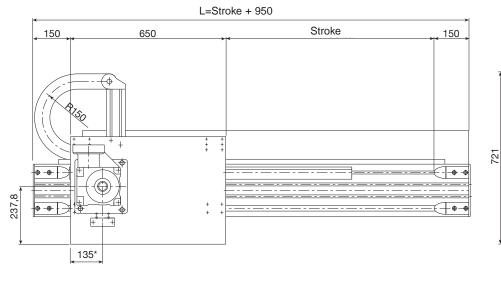
Performance	X-axis	
Max. load (Pc max) with load on a	xis (L \leq 1,600 r	nm)
Max. speed	3	[m/s]
Max. acceleration	6	[m/s ²]
Repeatability	± 0.2	[mm]
Beam max. length without joint	12000	[mm]

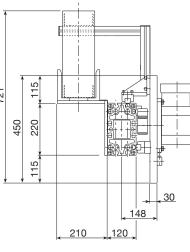
кесоп	imenaea	i max w	orking c	οπαιτι	ons	
Model	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
PAR 5	3,000	6,720	6,720	9,800	29,900	29,900
machine acting in	es shown ry. They r dividually. our technic	efer to ma In case o	ximum per	rformand	ce with ea	ach force

Assembly positions and load direction, see page 10

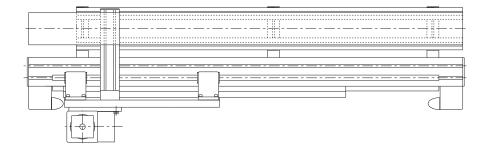
Construction data	X-axis	
Load-bearing beam (see page 15/17)	Logyca	
Rack (tempered, helical teeth: module KTD)	module 4	[mm ²]
Guide rail	55x25 (hardened and polished)	
Translation	4 roller slides with 4 rollers Ø62	
Room available for energy chain	115x45	[mm ²]
Ø Pinion pitch diameter type ND	76.39 (as an alternative 106.10)	[mm]

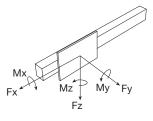
Weights	X-axis	
"Base" model (stroke _x =0)	M _{base} = 106 approx.	[kg]
Slide (plates + carriages)	M _{slide} = 54 approx.	[kg]
Beam (incl. guide rails and rack)	$q_X = 52$ approx.	[kg/m]


Formula:


Module total weight: Mtot=Mbase+(qx•strokex)/1,000 Strokex [mm]

PASM 5


P / A / S / M / 220 / Stroke / Length / FRD / ...



* For indication only, variable according to the gearbox chosen

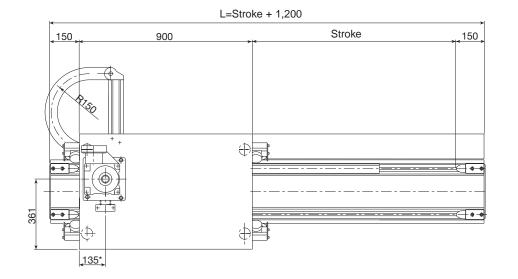
Performances	X-axis	
Max. load (Pc max) with load on a	axis (L \leq 1,600 r	mm)
Max. speed	3	[m/s]
Max. acceleration	6	[m/s ²]
Repeatability	± 0.05	[mm]
Beam max. length without joint	12000	[mm]

Recommended max working conditions					
Model M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _v [N]	F _z [N]
PASM 5 2,060	5,200	5,200	9,800	24,100	24,100

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept. The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

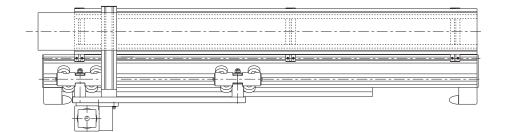
Construction data	X-axis	
Load-bearing beam (see page 15/17)	Logyca	
Rack (tempered, helical teeth, ground: module KSD)	module 4	[mm ²]
Translation: 4 caged ball roller slides and guide rails	Size 25	
Room available for energy chain	115x45	[mm ²]
Pinion pitch diameter (induction-hardened, ground - RD)	76.39 (as an alternative 106.10)	[mm]

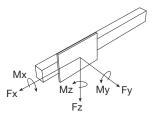
Weights	X-axis	
"Base" model (stroke _x =0)	M _{base} = 90 approx.	[kg]
Slide (plates + carriages)	M _{slitta} = 44 approx.	[kg]
Beam (incl. guide rails and rack)	$q_X = 44$ approx.	[kg/m]


Formula:

Module total weight: Mtot=Mbase+(qx•strokex)/1,000 Strokex [mm]

PAR 6


P / A / R / P / 280 / Stroke / Length / FND / ...


300 Kg PC High Cycle Rate Low Cycle Rate 600 Kg

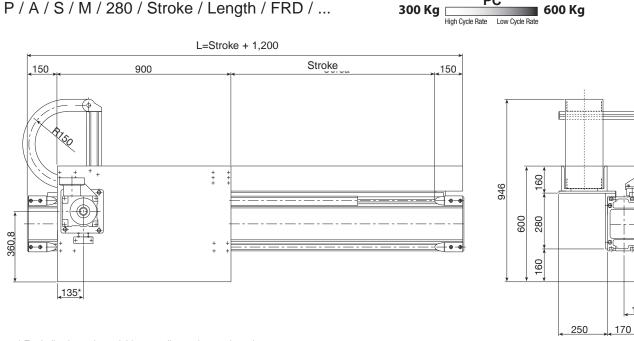
* For indication only, variable according to the gearbox chosen

Performance	X-axis	
Max. load (Pc max) with load on ax	kis (L \leq 1,600 r	mm)
Max. speed	3	[m/s]
Max. acceleration	4	[m/s ²]
Repeatability	± 0.2	[mm]
Beam max. length without joint	12000	[mm]

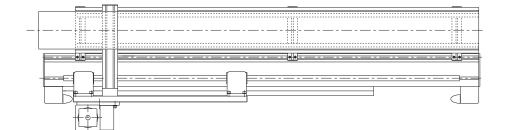
Recom	Recommended max working conditions					
Model	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
PAR 6	3,700	8,770	8,770	10,280	29,900	29,900
machine acting in	ers shown ery. They ro ndividually. our technic	efer to ma: In case of	ude a safet ximum per f peak forc	y coeffici formance es acting	ent for au e with ea g togethe	Itomated Ich force er please

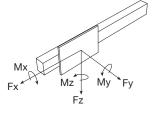
Assembly positions and load direction, see page 10

Construction data	X-axis	
Load-bearing beam (see page 15/17)	Pratyca	
Rack (tempered, helical teeth: module KTD)	module 4	[mm ²]
Guide rail	55x25 (hardened and polished)	
Translation	4 roller slides with 4 rollers Ø62	
Room available for energy chain	175x45	[mm²]
Pinion pitch diameter type ND	76.39 (as an alternative 106.10)	[mm]


Weights	X-axis	
"Base" model (stroke _x =0)	M _{base} = 164	[kg]
Slide (plates + carriages)	M _{slide} = 79	[kg]
Beam (incl. guide rails and rack)	q _X = 19	[kg/m]

Formula:


 $\label{eq:module_total_stroke_x} \mbox{Module total weight: $M_{tot}=M_{base}$+$($q_x$-stroke_x$)/1,000 Stroke_x [mm]} $$$


PASM 6

P / A / S / M / 280 / Stroke / Length / FRD / ...

 * For indication only, variable according to the gearbox chosen

Tecline

ᡜᡦᡆ

165

30

PC

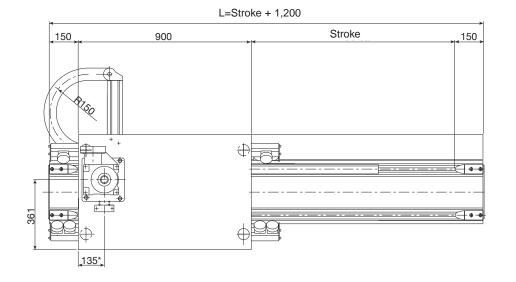
Performances	X-axis	
Max. load (Pc max) with load on	axis (L \leq 1,600 r	nm)
Max. speed	3	[m/s]
Max. acceleration	5	[m/s ²]
Repeatability	± 0.05	[mm]
Beam max. length without joint	12000	[mm]

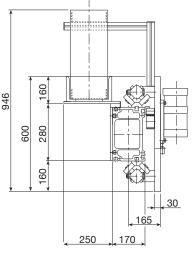
Recommended max working conditions						
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _v [N]	F _z [N]
PASM	6 4,160	6,750	6,750	10,280	34,050	34,050
machine	es shown ry. They r	efer to ma	aximum pe	rformanc	ce with ea	ach force

acting individually. In case of peak forces acting together please consult our technical dept. The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Construction data	X-axis	
Load-bearing beam (see page 15/17)	Pratyca	
Rack (tempered, helical teeth, ground: module KSD)	module 4	[mm ²]
Translation: 4 caged ball roller slides and guide rails	Size 30	
Room available for energy chain	175x45	[mm²]
Pinion pitch diameter (induction-hardened, ground - RD)	76.39 (as an alternative 106.10)	[mm]

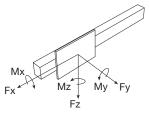
Weights	X-axis	
"Base" model (stroke _x =0)	M _{base} = 149 approx.	[kg]
Slide (plates + carriages)	M _{slitta} = 69 approx.	[kg]
Beam (incl. guide rails and rack)	$q_X = 60$ approx.	[kg/m]


Formula:


Module total weight: $M_{tot}=M_{base}+(q_x \circ stroke_x)/1,000$ Stroke_x [mm]

PAR 8


P / A / R / P / 280 / Stroke / Length / FND / ...


300 Kg PC High Cycle Rate Low Cycle Rate 800 Kg

* For indication only, variable according to the gearbox chosen

Performance	X-axis	
Max. load (Pc max) with load on a	axis (L \leq 1,600 r	nm)
Max. speed	2.5	[m/s]
Max. acceleration	2	[m/s ²]
Repeatability	± 0.25	[mm]
Beam max. length without joint	12000	[mm]

Assembly positions and load direction, see page 10

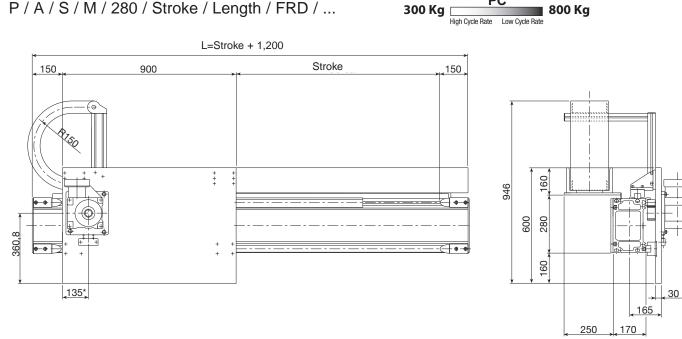
** With vertical positioning of the unit, a partial load capacity compensation is required

Recommended max working conditions						
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _v [N]	F _z [N]
PAR 8	5,550	8,800	13,160	10,280	44,800	29,900

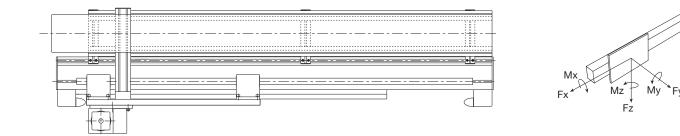
The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.

The values shown can be achieved with roller slides with 6 rollers suitable for maximum performance (see page 63-64).

Construction data	X-axis	
Load-bearing beam (see page 15/17)	Pratyca	
Rack (tempered, helical teeth: module KTD)	module 4	[mm ²]
Guide rail	55x25 (hardened and polished)	
Translation	4 roller slides with 6 rollers Ø62	
Room available for energy chain	175x45	[mm²]
Ø Pinion pitch diameter type ND	76.39 (as an alternative 106.10)	[mm]


Weights	X-axis	
"Base" model (stroke _x =0)	M _{base} = 173 approx.	[kg]
Slide (plates + carriages)	M _{slide} = 88 approx.	[kg]
Beam (incl. guide rails and rack)	$q_X = 66$ approx.	[kg/m]

Formula:


Module total weight: Mtot=Mbase+(qx•strokex)/1,000 Strokex [mm]

PASM 8

P / A / S / M / 280 / Stroke / Length / FRD / ...

* For indication only, variable according to the gearbox chosen

Performances	X-axis	
Max. load (Pc max) with load on a	xis (L \leq 1,600 r	nm)
Max. speed	2.5	[m/s]
Max. acceleration	2	[m/s ²]
Repeatability	± 0.1	[mm]
Beam max. length without joint	12000	[mm]

Recommended max working conditions						
Model	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _v [N]	F _z [N]
PASM	8 5,840	13,100	13,100	11,420	47,350	47,350

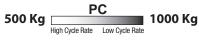
The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept. The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

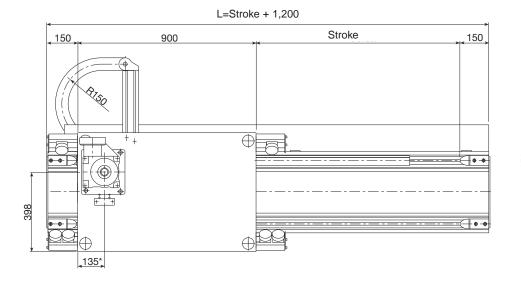
Construction data	X-axis	
Load-bearing beam (see page 15/17)	Pratyca	
Rack (tempered, helical teeth, ground: module KSD)	module 4	[mm ²]
Translation: 4 caged ball roller slides and guide rails	Size 35	
Room available for energy chain	175x45	[mm²]
Pinion pitch diameter (induction-hardened, ground - RD)	76.39 (as an alternative 106.10)	[mm]

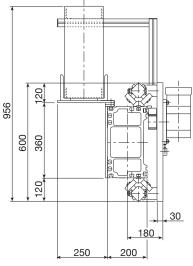
Weights	X-axis	
"Base" model (stroke _x =0)	M _{base} = 159 approx.	[kg]
Slide (plates + carriages)	M _{slitta} = 76 approx.	[kg]
Beam (incl. guide rails and rack)	$q_X = 64$ approx.	[kg/m]

Formula:

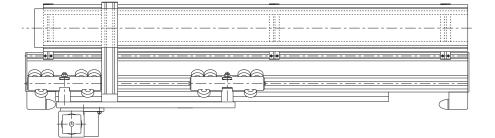
Module total weight: $M_{tot}=M_{base}+(q_x \circ stroke_x)/1,000$ Stroke_x [mm]

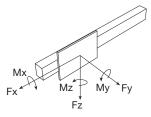

TL-31


Tecline


PC

PAR 10


P / A / R / P / 360 / Stroke / Length / FND / ...



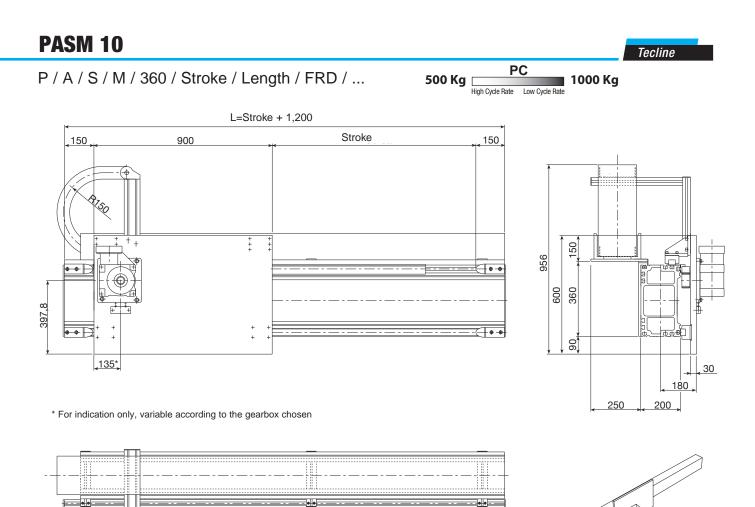
* For indication only, variable according to the gearbox chosen

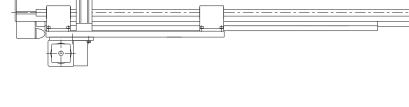
Performance	X-axis	
Max. load (Pc max) with load on a	axis (L \leq 1,600 r	nm)
Max. speed	2.5	[m/s]
Max. acceleration	2	[m/s ²]
Repeatability	± 0.25	[mm]
Beam max. length without joint	12000	[mm]

Assembly positions and load direction, see page 10

** With vertical positioning of the unit, a partial load capacity compensation is required

Recommended max working conditions						
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _v [N]	F _z [N]
		8,800			-	


The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept. The values shown can be achieved with roller slides with 6 rollers suitable for maximum performance (see page 63-64).


Construction data	X-axis	
Load-bearing beam (see page 15/17)	Solyda	
Rack (tempered, helical teeth: module KTD)	module 4	[mm ²]
Guide rail	55x25 (hardened and polished)	
Translation	4 roller slides with 6 rollers Ø62	
Room available for energy chain	115x45	[mm ²]
Pinion pitch diameter type ND	76.39 (as an alternative 106.10)	[mm]

Weights	X-axis	
"Base" model (stroke _x =0)	M _{base} = 196 approx.	[kg]
Slide (plates + carriages)	M _{slide} = 88 approx.	[kg]
Beam (incl. guide rails and rack)	$q_X = 85$ approx.	[kg/m]

Formula:

Module total weight: Mtot=Mbase+(qx•strokex)/1,000 Strokex [mm]

commended max working conditions	

Mx

Fx

Ŵу

Mz

Fż

Performances	X-axis		
Max. load (Pc $_{max}$) with load on axis (L \leq 1,600 mm)			
Max. speed	2.5	[m/s]	
Max. acceleration	3	[m/s ²]	
Repeatability	± 0.1	[mm]	
Beam max. length without joint	12000	[mm]	

Recommended max working conditions						
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _v [N]	$F_{z}[N]$
PASM1	0 7,240	13,100	13,100	11,600	47,350	47,350

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept. The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Construction data	X-axis	
Load-bearing beam (see page 15/17)	Solyda	
Rack (tempered, helical teeth, ground: module KSD)	module 4	[mm²]
Translation: 4 caged ball roller slides and guide rails	Size 35	
Room available for energy chain	175x45	[mm²]
Pinion pitch diameter (induction-hardened, ground - RD)	127.32	[mm]

Weights	X-axis	
"Base" model (stroke _x =0)	M _{base} = 182 approx.	[kg]
Slide (plates + carriages)	M _{slitta} = 76 approx.	[kg]
Beam (incl. guide rails and rack)	$q_X = 83$ approx.	[kg/m]

Formula:

Module total weight: $M_{tot}=M_{base}+(q_x \circ stroke_x)/1,000$ Stroke_x [mm]

TL-33

T L

PAR 1/05

Y-Axis / P / A / R / Q / 180 / Stroke / Length / FND / ... Z-Axis / P / A / R / Q / 90 / Stroke / Length / X / FND / ...

PC 5 Kg High Cycle Rate Low Cycle Rate 🛯 80 Kg

R150

φ

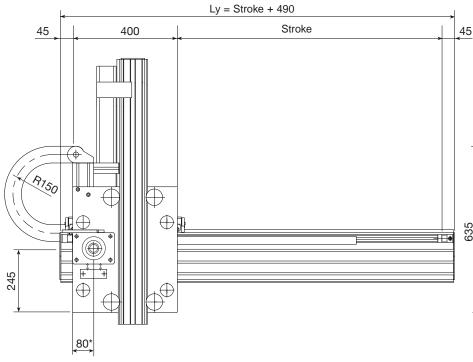
175

180

125

8

Stroke


L = Stroke + 555

480


45

20

92,5

* For indication only, variable according to the gearbox chosen

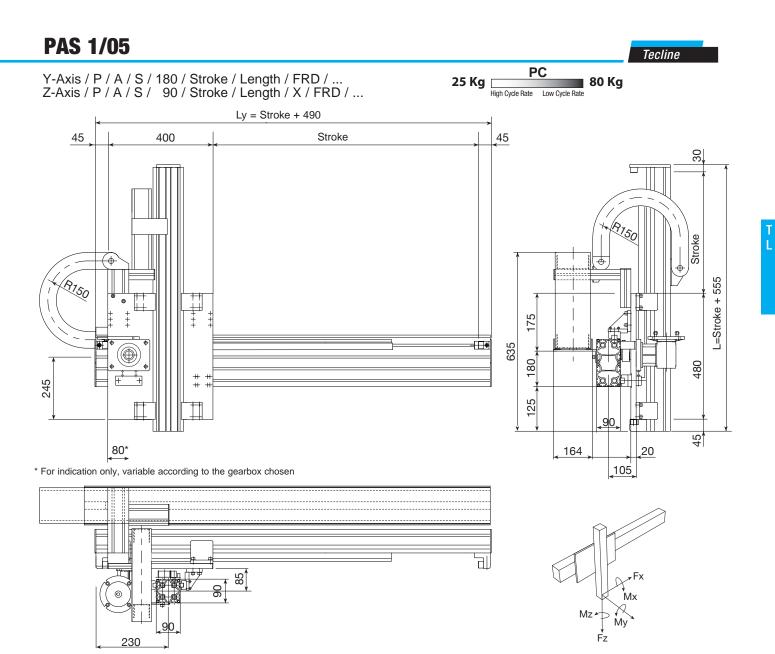
Fz Fz

164

Performances	Y-axis	Z-axis	
Max. load (Pc max) with load or	n axis (Lz ≤	1,600 mm)	
Max. speed	3.5	3.5	[m/s]
Max. acceleration	8	5	[m/s ²]
Repeatability	-	±0.2*	[mm]
Beam max. length without joint	8000	6000	[mm]

* Reference value considering a stroke of 1000 mm on Z axis.

Recommended max working conditions					
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _z [N]
PAR 1/0)5 490	1,170	1,170	1,600	1,620
The values shown above include a safety coefficient for automated					


machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept. The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page 15/17)	E01-5	E01-4	
Rack (tempered, helical teeth: module KTD)	module 2	module 2	[mm ²]
Guide rails	28x11 (hardened)	28x11 (hardened)	
Translation	4 roller slides with 4 rollers Ø30	4 V-shaped rollers Ø63	
Room available for energy chain	115x45	75x45	[mm ²]
Pinion pitch diameter type ND	44.56 (as an alternative 63.66)	44.56 (as an alternative 63.66)	[mm]

Weights	Y-axis	Z-axis	
"Base" model (stroke _x and stroke _z =0)		$M_{base} = 59$	[kg]
Slide (plates + carriages)		M _{slide} = 26	[kg]
Beam (incl. guide rails and rack)	q _y = 22	q _z = 15	[kg/m]

Formules:

Stroke_x and stroke_z [mm]

Performances	Y-axis	Z-axis	
Max. load (Pc max) with load or	n axis (Lz ≤	1,600 mm)	
Max. speed	3.5	3.5	[m/s]
Max. acceleration	8	5	[m/s ²]
Repeatability	-	±0.1*	[mm]
Beam max. length without joint	8000	6000	[mm]

 Model
 Mx[Nm]
 My[Nm]
 Mz[Nm]
 Fx[N]
 Fz[N]

 PAS 1/05
 1,220
 1,440
 320
 1,200
 2,310

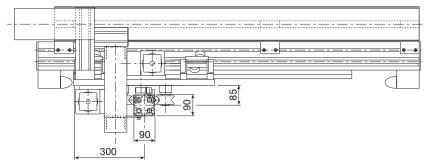
The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.

The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

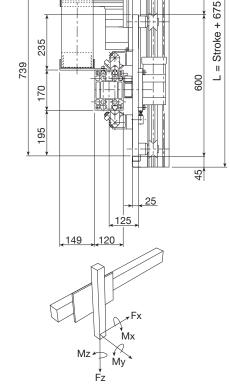
Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page 15/17)	E01-5	E01-4	
Rack (tempered, helical teeth, ground: module KSD)	module 2	module 2	[mm ²]
Translation: 4 caged ball roller slides and guide rails	size 20	size 15	
Room available for energy chain	115x45	75x45	[mm ²]
Pinion pitch diameter (induction-hardened, ground - RD)	44.56 (as an alternative 63.66)	44.56 (as an alternative 63.66)	[mm]

Weights	Y-axis	Z-axis	
Base" model (stroke _x and stroke _z =0)		M _{base} = 59	[kg]
Slide (plates + carriages)		M _{slide} = 26	[kg]
Beam (incl. guide rails and rack)	q _y = 24	q _z = 14	[kg/m]

Formules:


Actual load: $P_{eff.} = P_{max}$ -(Lz - 1,600)/1,000• q_z < of Pc Module total weight: $M_{tot}=M_{base}+(q_y$ •stroke_y+ q_z • stroke_z)/1,000 Stroke_x and stroke_z [mm]

PAR 2/1


Y-Axis / P / A / R / Q / 170 / Stroke / Length / FND / ... Z-Axis / P / A / R / P / 90 / Stroke / Length / X / FND / ...

* For indication only, variable according to the gearbox chosen

Performances	Y-axis	Z-axis	
Max. load (Pc max) with load or	n axis (Lz :	≤ 1,600 mm)	
Max. speed	3.5	3.5	[m/s]
Max. acceleration	10	7	[m/s ²]
Repeatability	-	±0.2*	[mm]
Beam max. length without joint	8000	6000	[mm]
* Reference value considering a	stroke of 1	1000 mm on Z a	axis.

PC

🛛 80 Kg

30

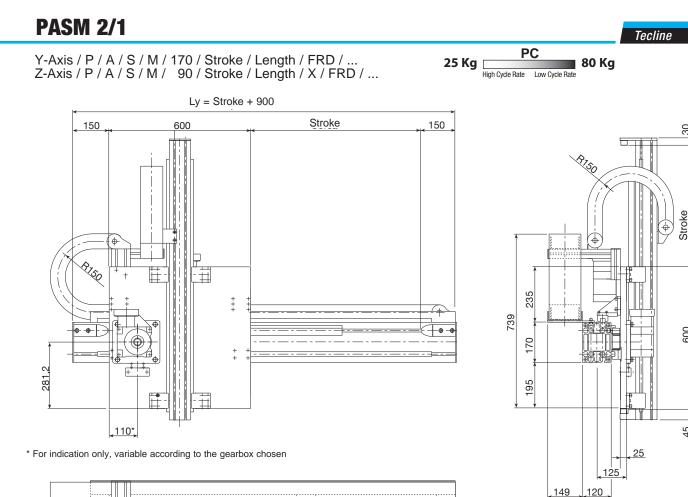
Stroke

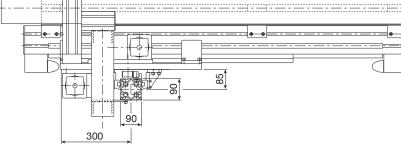
25 Kg High Cycle Rate Low Cycle Rate

R150

¢

Recommended max working conditions					
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _z [N]
PAR 2/1	956	1,340	170	3,200	2,300


The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.


Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page 15/17)	Statyca	E01-4	
Rack (tempered, helical teeth: module KTD)	module 3	module 2	[mm ²]
Guide rails	28x11 (hardened and polished)	28x11 (hardened and polished)	
Translation	4 roller slides with 2 rollers Ø30	4 V-shaped rollers Ø63	
Room available for energy chain	115x45	75x45	[mm ²]
Pinion pitch diameter type ND	63.66 (as an alternative 89.13)	44.56 (as an alternative 63.66)	[mm]

Weights	Y-axis	Z-axis	
"Base" model (stroke _x and stroke _z =0)	M _{base} = 88 approx.		[kg]
Slide (plates + carriages)	M _{slide}	= 44 approx.	[kg]
Beam (incl. guide rails and rack)	q _y = 31 approx.	q _z = 15 approx.	[kg/m]

Formules:

Stroke_x and stroke_z [mm]

Performances	Y-axis	Z-axis	
Max. load (Pc max) with load or	n axis (Lz ≤	1,600 mm)	
Max. speed	3.5	3.5	[m/s]
Max. acceleration	10	7	[m/s ²]
Repeatability	-	±0.1*	[mm]
Beam max. length without joint	6000	6000	[mm]
* 5 /			

Recommended max working conditions					
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _z [N]
	2/1 1,170	1,440	320		2,300

Mz

Fz

Мх

Мy

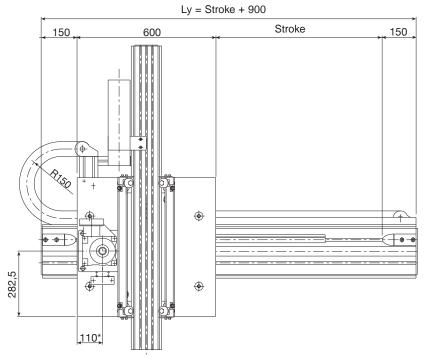
The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept. The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page 15/17)	Statyca	E01-4	
Rack (tempered, helical teeth, ground: module KSD)	module 3	module 2	[mm ²]
Translation: 4 caged ball roller slides and guide rails	size 20	size 15	
Room available for energy chain	115x45	75x45	[mm ²]
Pinion pitch diameter (induction-hardened, ground - RD)	63.66 (as an alternative 89.13)	44.56 (as an alternative 63.66)	[mm]

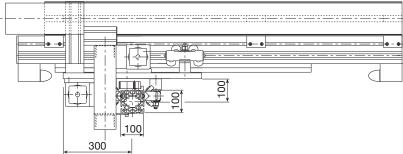
Weights	Y-axis	Z-axis	
Base" model (stroke _x and stroke _z =0)	M _{base} = 89 approx.		[kg]
Slide (plates + carriages)	M _{slide} = 43 approx		[kg]
Beam (incl. guide rails and rack)	$q_y = 29$ approx.	$q_z = 14 \text{ approx.}$	[kg/m]

Formules:

80


Lz = Stroke + 675

600


45

PAR 3/1

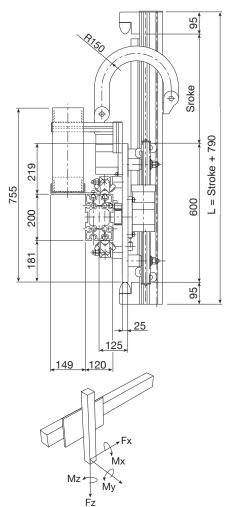
Y-Axis / P / A / R / Q / 200 / Stroke / Length / FND / ... Z-Axis / P / A / R / Q / 100 / Stroke / Length / X / FND / ...

* For indication only, variable according to the gearbox chosen

Performances	Y-axis	Z-axis	
Max. load (Pc max) with load or	n axis (Lz ≤	1,600 mm)	
Max. speed	3	3	[m/s]
Max. acceleration	7	7	[m/s ²]
Repeatability	-	±0.25*	[mm]
Beam max. length without joint	12000	6000	[mm]

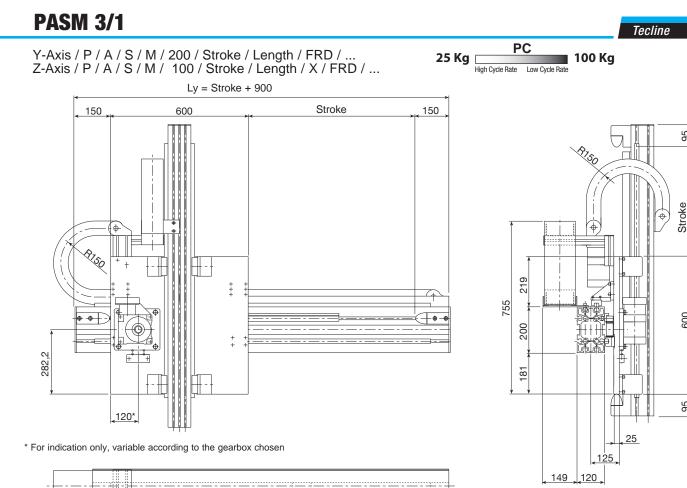
Recommended max working conditions					
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _z [N]
PAR 3/1	1,115	1,520	352	3,200	2,400

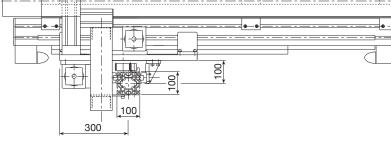
The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.


* Reference value considering a stroke of 1000 mm on Z axis.

Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page 15/17)	Valyda	MA1-5	
Rack (tempered, helical teeth: module KTD)	module 3	module 3	[mm ²]
Guide rails	35x16 (hardened and polished)	35x16 (hardened and polished)	
Translation	4 roller slides with 4 rollers Ø40	2 roller slides with 4 rollers Ø4	0
Room available for energy chain	115x45	75x45	[mm ²]
Pinion pitch diameter type ND	63.66 (as an alternative 89.13)	63.66 (as an alternative 89.13)	[mm]

Weights	Y-axis	Z-axis	
"Base" model (stroke _x and stroke _z =0)	M _{base} = 1	11 approx.	[kg]
Slide (plates + carriages)	M _{slide} = 54 approx.		[kg]
Beam (incl. guide rails and rack)	q _y = 35 approx.	$q_z = 24$ approx.	[kg/m]


Formules:


Stroke_x and stroke_z [mm]

PC

25 Kg High Cycle Rate Low Cycle Rate 100 Kg

Performances	Y-axis	Z-axis	
Max. load (Pc max) with load or	n axis (Lz ≤	1,600 mm)	
Max. speed	3	3	[m/s]
Max. acceleration	7	7	[m/s ²]
Repeatability	-	±0.1*	[mm]
Beam max. length without joint	12000	6000	[mm]

			Fz		
Recom	mended n	nax worki	ng condi	itions	
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _z [N]
PASM 3/	1 1,280	1,890	485	3,200	2,400

M₇

/Fx Мх

Ńу

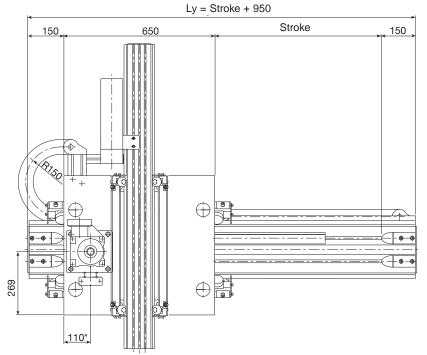
The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept. The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page 15/17)	Valyda	MA1-5	
Rack (tempered, helical teeth, ground: module KSD)	module 3	module 3	[mm ²]
Translation: 4 caged ball roller slides and guide rails	size 20	size 20	
Room available for energy chain	115x45	75x45	[mm ²]
Pinion pitch diameter (induction-hardened, ground - RD)	63.66 (as an alternative 89.13)	63.66 (as an alternative 89.13)	[mm]

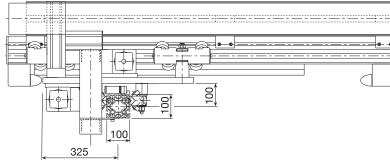
Weights	Y-axis	Z-axis	
Base" model (stroke _x and stroke _z =0)	M _{base}	_e = 100 approx.	[kg]
Slide (plates + carriages)	M _{slide} = 45 approx.		[kg]
Beam (incl. guide rails and rack)	$q_y = 33 \text{ approx.}$	$q_z = 21$ approx.	[kg/m]

Formules:

Stroke_x and stroke₇ [mm] 95


Lz = Stroke + 790

600


95

PAR 4/1

Y-Axis / P / A / R / P /200 / Stroke / Length / FND / ... Z-Axis / P / A / R / Q / 100 / Stroke / Length / X / FND / ...

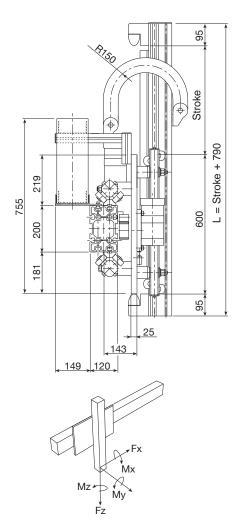
* For indication only, variable according to the gearbox chosen

Performances	Y-axis	Z-axis	
Max. load (Pc max) with load or	n axis (Lz ≤	1,600 mm)	
Max. speed	3	3	[m/s]
Max. acceleration	7	7	[m/s ²]
Repeatability	-	±0.25*	[mm]
Beam max. length without joint	12000	6000	[mm]

Recommended max working conditions Model M_x[Nm] M_v[Nm] M_z[Nm] $F_{z}[N]$ F_x[N] 1520 4250 2400 PAR 4/1 1520 352

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.

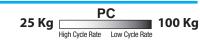
* Reference value considering a stroke of 1000 mm on Z axis.

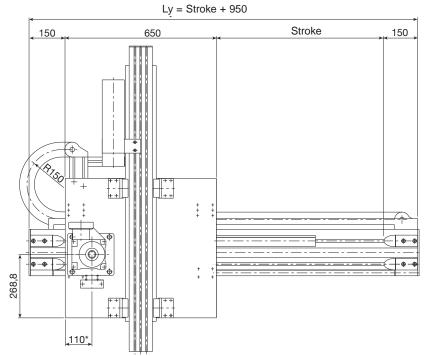

Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page 15/17)	Valyda	MA1-5	
Rack (tempered, helical teeth: module KTD)	module 4	module 3	[mm ²]
Guide rails	55x25 (hardened and polished)	35x16 (hardened and polished)	
Translation	4 roller slides with 4 rollers Ø52	2 roller slides with 4 rollers Ø4	0
Room available for energy chain	115x45	75x45	[mm ²]
Pinion pitch diameter type ND	76.39 (as an alternative 106.10)	63.66 (as an alternative 89.13)	[mm]

Weights	Y-axis	Z-axis	
"Base" model (stroke _x and stroke _z =0)	M _{base} = 1	40 approx.	[kg]
Slide (plates + carriages)	M _{slide} = 69 approx.		[kg]
Beam (incl. guide rails and rack)	q _y = 48 approx.	$q_z = 24 \text{ approx.}$	[kg/m]

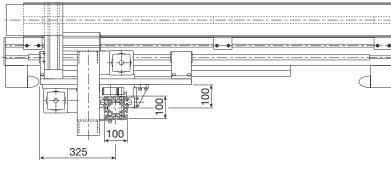
Formules:

 $Stroke_X$ and $stroke_Z$ [mm]

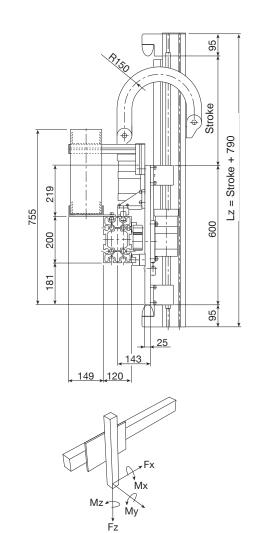




PC 25 Kg High Cycle Rate 🛯 100 Kg Low Cycle Rate


PASM 4/1

Y-Axis / P / A / S / M / 200 / Stroke / Length / FRD / ... Z-Axis / P / A / S / M / 100 / Stroke / Length / X / FRD / ...



* For indication only, variable according to the gearbox chosen

Performances	Y-axis	Z-axis	
Max. load (Pc max) with load or	n axis (Lz ≤	1,600 mm)	
Max. speed	3	3	[m/s]
Max. acceleration	7	7	[m/s ²]
Repeatability	-	±0.1*	[mm]
Beam max. length without joint	12000	6000	[mm]

* Reference value considering a stroke of 1000 mm on Z axis.

Recommended max working conditions					
Model	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _z [N]
PASM 4/1	1,700	1,890	485	4,250	2,400

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept. The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page 15/17)	Valyda	MA1-5	
Rack (tempered, helical teeth, ground: module KSD)	module 4	module 3	[mm ²]
Translation: 4 caged ball roller slides and guide rails	size 25	size 20	
Room available for energy chain	115x45	75x45	[mm ²]
Pinion pitch diameter (induction-hardened, ground - RD)	76.39 (as an alternative 106.10)	63.66 (as an alternative 89.13)	[mm]

Weights	Y-axis	Z-axis	
Base" model (stroke _x and stroke _z =0)	M _{base}	, = 121 approx.	[kg]
Slide (plates + carriages)	M _{slide} = 59 approx.		[kg]
Beam (incl. guide rails and rack)	$q_y = 40$ approx.	$q_z = 21$ approx.	[kg/m]

Formules:

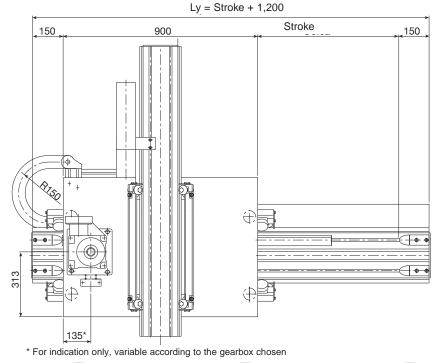
PAR 5/2

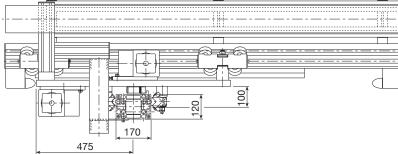
Y-Axis / P / A / R / P / 220 / Stroke / Length / FND / ... Z-Axis / P / A / R / Q / 170 / Stroke / Length / X / FND / ... 60 Kg PC High Cycle Rate Low Cycle Rate 200 Kg

95

Stroke

L = Stroke + 870


680


95

30

148

-Fx

Y-axis

3

6

-

Z-axis

±0.25*

3

4

			Mz Fz		
Recom	nended r	nax work	ing condit	ions	
Model	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _z [N]
PAR 5/2	1,520	1,520	580	4,670	3,580

210

270

220

190

796

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.

Beam max. length without joint120006000[mm]* Reference value considering a stroke of 1000 mm on Z axis.

Max. load (Pc $_{max})$ with load on axis $\$ (Lz \leq 1,600 mm)

Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page 15/17)	Logyca	Statyca	
Rack (tempered, helical teeth: module KTD)	module 4	module 3 [mm	n²]
Guide rails	55x25 (hardened and polished)	35x16 (hardened and polished)	
Translation	4 roller slides with 4 rollers Ø62	4 roller slides with 2 rollers Ø40	
Room available for energy chain	115x45	75x45 [mm	n²]
Pinion pitch diameter type ND	76.39 (as an alternative 106.10)	63.66 (as an alternative 89.13) [mn	m]

[m/s]

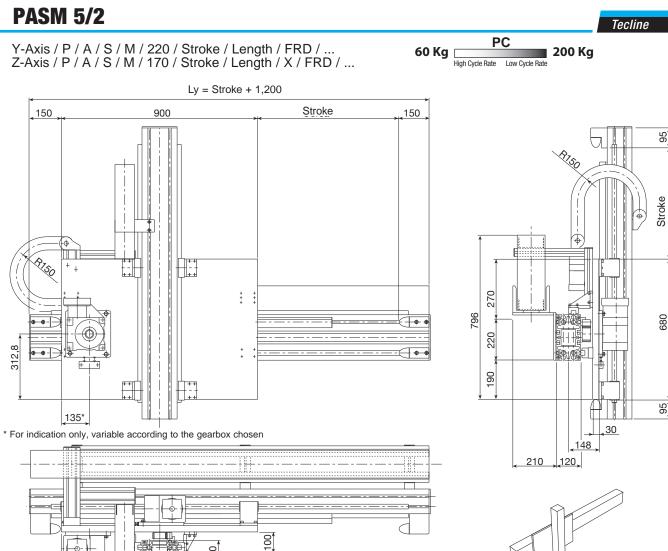
[m/s²]

[mm]

Weights	Y-axis	Z-axis	
"Base" model (stroke _x and stroke _z =0)	M _{base} = 19	95 approx.	[kg]
Slide (plates + carriages)	M _{slide} = 98	approx.	[kg]
Beam (incl. guide rails and rack)	$q_y = 52 \text{ approx.}$	q _z = 31 approx.	[kg/m]

Formules:

Performances


Max. acceleration

Max. speed

Repeatability

Actual load: $P_{eff.} = P_{max}$ -(Lz - 1,600)/1,000• q_z < of Pc

Module total weight: $M_{tot}=M_{base}+(q_v \circ stroke_v+q_z \circ stroke_z)/1,000$ Stroke_x and stroke_z [mm]

	Î	·					0)	+ 870
	296	190 220 270					680	Lz = Stroke + 870
	ž	¥			Ĥ	TI	95	
				1	48	30		
_			210	120,				
			A		Fx Mx	2		
			M	z≁⊃ Ý,	~			

Мy

Performances	Y-axis	Z-axis	
Max. load (Pc max) with load or	n axis (Lz ≤	1,600 mm)	
Max. speed	3	3	[m/s]
Max. acceleration	6	4	[m/s ²]
Repeatability	-	±0.1*	[mm]
Beam max. length without joint	12000	6000	[mm]

170

475

120

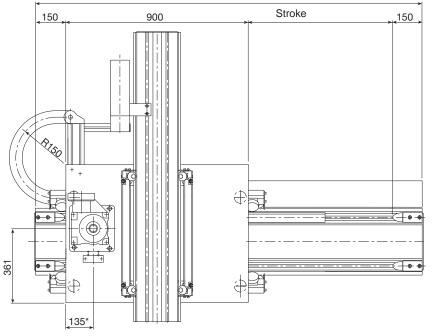
* Reference value considering a stroke of 1000 mm on Z axis.

			Fz		
Recommended max working conditions					
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _z [N]
PASM 5/	/2 2,060	3,320	1,210	4,670	3,580
T 1			(e	

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept. The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

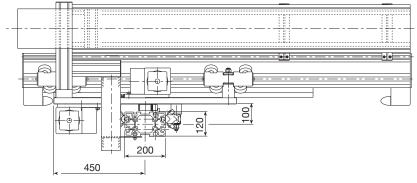
Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page 15/17)	Logyca	Statyca	
Rack (tempered, helical teeth, ground: module KSD)	module 4	module 3	[mm ²]
Translation: 4 caged ball roller slides and guide rails	size 25	size 25	
Room available for energy chain	115x45	75x45	[mm ²]
Pinion pitch diameter (induction-hardened, ground - RD)	76.39 (as an alternative 106.10)	63.66 (as an alternative 89.13)	[mm]

Weights	Y-axis	Z-axis	
Base" model (stroke _x and stroke _z =0)	M _{base} = 178 approx.		[kg]
Slide (plates + carriages)	M _{slide} = 95 approx.		[kg]
Beam (incl. guide rails and rack)	$q_y = 44$ approx.	$q_z = 29 \text{ approx.}$	[kg/m]


Formules:

```
Stroke<sub>x</sub> and stroke<sub>7</sub> [mm]
```

PAR 6/2


Y-Axis / P / A / R / P / 280 / Stroke / Length / FND / ... Z-Axis / P / A / R / Q / 200 / Stroke / Length / X / FND / ...

PC 100 Kg High Cycle Rate Low Cycle Rate

Ly = Stroke + 1,200

* For indication only, variable according to the gearbox chosen

Performances	Y-axis	Z-axis	
Max. load (Pc max) with load or	n axis (Lz ≤	1,600 mm)	
Max. speed	3	3	[m/s]
Max. acceleration	4	4	[m/s ²]
Repeatability	-	±0.25*	[mm]
Beam max. length without joint	12000	12000	[mm]

95 Stroke É L = Stroke + 870240 946 680 280 160 95 30 <u>165</u> 170 250 -Fx Мх

🛛 200 Kg

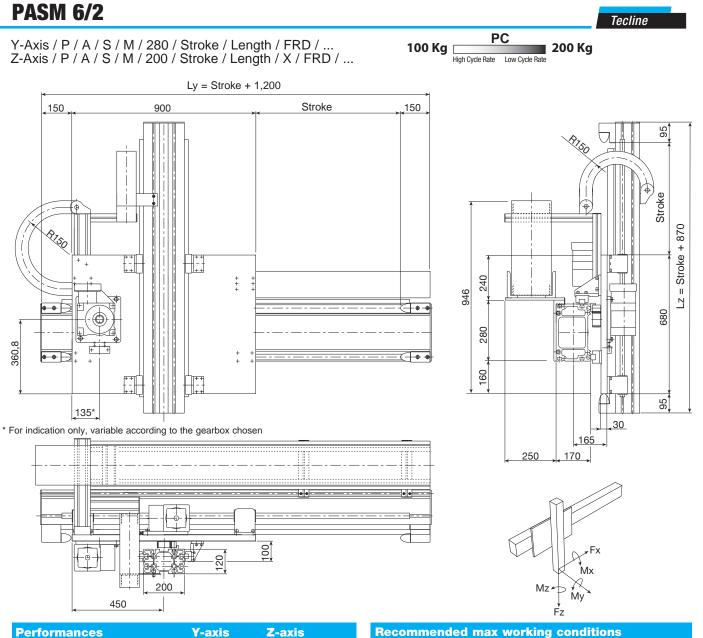
Recommended max working conditions					
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _z [N]
PAR 6/2	1,520	1,520	670	3,585	3,665

Mz

_{Fz}

Мy

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.


* Reference value considering a stroke of 1000 mm on Z axis.

Constructive data	Y-axis	Z-axis
Load-bearing beam (see page 15/17)	Pratyca	Valyda
Rack (tempered, helical teeth: module KTD)	module 4	module 3 [mm ²]
Guide rails	55x25 (hardened and polished)	35x16 (hardened and polished)
Translation	4 roller slides with 4 rollers Ø62	2 roller slides with 4 rollers Ø40
Room available for energy chain	175x45	75x45 [mm ²]
Pinion pitch diameter type ND	76.39 (as an alternative 106.10)	63.66 (as an alternative 89.13) [mm]

Weights	Y-axis	Z-axis	
"Base" model (stroke _x and stroke _z =0)	M _{base} = 2	20 approx.	[kg]
Slide (plates + carriages)	M _{slide} = 99 approx.		[kg]
Beam (incl. guide rails and rack)	$q_y = 66 approx.$	$q_z = 35 \text{ approx.}$	[kg/m]

Formules:

Stroke_x and stroke_z [mm]

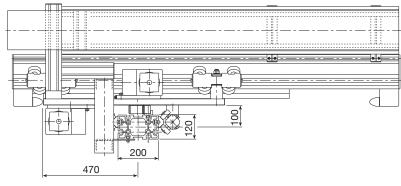
Performances	Y-axis	Z-axis	
Max. load (Pc max) with load or	n axis (Lz ≤	1,600 mm)	
Max. speed	3	3	[m/s]
Max. acceleration	4	4	[m/s ²]
Repeatability	-	±0.1*	[mm]
Beam max. length without joint	12000	12000	[mm]

M_v[Nm] M_z[Nm] Model $M_{x}[Nm]$ $F_{z}[N]$ $F_{x}[N]$ PASM 6/2 3,000 3,310 3,585 3,665 1,375

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept. The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page 15/17)	Pratyca	Valyda	
Rack (tempered, helical teeth, ground: module KSD)	module 4	module 3	[mm ²]
Translation: 4 caged ball roller slides and guide rails	size 30	size 25	
Room available for energy chain	175x45	75x45	[mm ²]
Pinion pitch diameter (induction-hardened, ground - RD)	76.39 (as an alternative 106.10)	63.66 (as an alternative 89.13)	[mm]

Weights	Y-axis	Z-axis	
Base" model (stroke _x and stroke _z =0)	M _{base}	e = 202 approx.	[kg]
Slide (plates + carriages)	M _{slide} = 86 approx.		[kg]
Beam (incl. guide rails and rack)	q _y = 60 approx.	q _z = 34 approx.	[kg/m]


Formules:

PAR 6/4

Y-Axis / P / A / R / P / 280 / Stroke / Length / FND / ... Z-Axis / P / A / R / P / 200 / Stroke / Length / X / FND / ...

Ly = Stroke + 1,200Stroke 150 150 900 R15Q Ð 10 F 361 -**-**£ 135*

* For indication only, variable according to the gearbox chosen

Performances	Y-axis	Z-axis	
Max. load (Pc max) with load or	n axis (Lz ⊴	≦ 1,600 mm)	
Max. speed	3	2	[m/s]
Max. acceleration	4	3	[m/s ²]
Repeatability	-	±0.25*	[mm]
Beam max. length without joint	12000	12000	[mm]

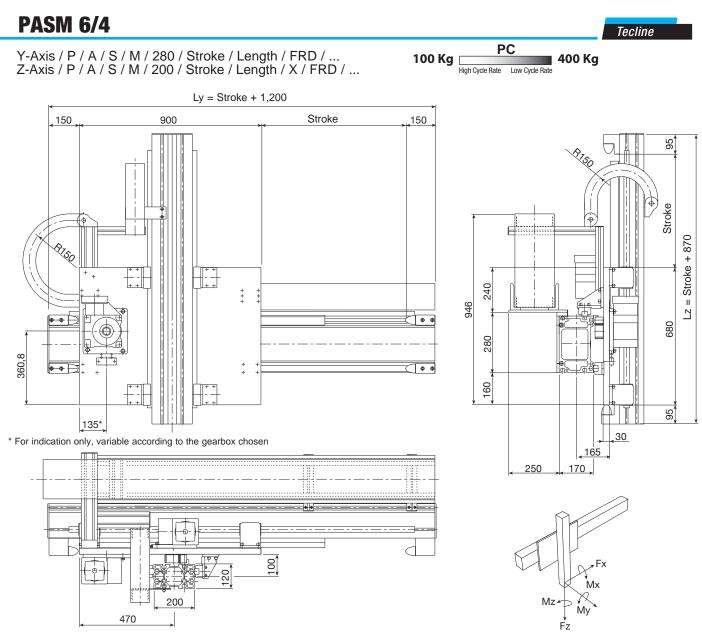
PC

🛛 400 Kg

100 Kg High Cycle Rate Low Cycle Rate

Recommended max working conditions					
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _z [N]
PAR 6/4	4 2,435	2,435	1,200	3,585	6,350

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.


* Reference value considering a stroke of 1000 mm on Z axis.

Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page 15/17)	Pratyca	Valyda	
Rack (tempered, helical teeth: module KTD)	module 4	module 4	[mm ²]
Guide rails	55x25 (hardened and polished)	55x25 (hardened and polished)	
Translation	4 roller slides with 4 rollers Ø62	2 roller slides with 6 rollers Ø5	2
Room available for energy chain	175x45	75x45	[mm ²]
Pinion pitch diameter type ND	76.39 (as an alternative 106.10)	76.39 (as an alternative 106.10	0) [mm]

Weights	Y-axis	Z-axis	
"Base" model (stroke _x and stroke _z =0)	M _{base} = 2	44 approx.	[kg]
Slide (plates + carriages)	M _{slide} = 112	2 approx.	[kg]
Beam (incl. guide rails and rack)	$q_y = 66 approx.$	$q_z = 48 \text{ approx.}$	[kg/m]

Formules:

 $Stroke_X$ and $stroke_Z$ [mm]

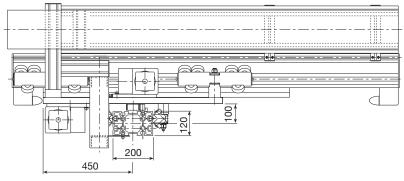
Performances	Y-axis	Z-axis	
Max. load (Pc max) with load or	n axis (Lz ≤	1,600 mm)	
Max. speed	3	2	[m/s]
Max. acceleration	4	3	[m/s ²]
Repeatability	-	±0.1*	[mm]
Beam max. length without joint	12000	12000	[mm]

Recommended max working conditions					
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _z [N]
PASM 6/	/4 3,000	3,310	1,375	3,585	6,350

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept. The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

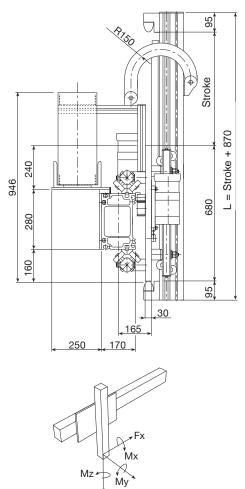
Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page 15/17)	Pratyca	E01-4	
Rack (tempered, helical teeth, ground: module KSD)	module 4	module 4 [r	nm²]
Translation: 4 caged ball roller slides and guide rails	size 30	size 25	
Room available for energy chain	175x45	75x45 [r	nm²]
Pinion pitch diameter (induction-hardened, ground - RD)	76.39 (as an alternative 106.10)	76.39 (as an alternative 106.10) [mm]

Weights	Y-axis	Z-axis	
Base" model (stroke _x and stroke _z =0)	M _{base} = 217 approx.		[kg]
Slide (plates + carriages)	M _{slide} = 105 approx.		[kg]
Beam (incl. guide rails and rack)	q _y = 60 approx.	q _z = 39 approx.	[kg/m]


Formules:

PAR 8/3

Y-Axis / P / A / R / P / 280 / Stroke / Length / FND / ... Z-Axis / P / A / R / P / 200 / Stroke / Length / X / FND / ...


Ly = Stroke + 1,200Stroke 150 900 150 R15Q Ð F 0 361 135*

* For indication only, variable according to the gearbox chosen

Performances	Y-axis	Z-axis	
Max. load (Pc max) with load or	n axis (Lz ≤	1,600 mm)	
Max. speed	2.5	2	[m/s]
Max. acceleration	2.5	3	[m/s ²]
Repeatability	-	±0.25*	[mm]
Beam max. length without joint	12000	12000	[mm]

* Reference value considering a stroke of 1000 mm on Z axis.

100 Kg High Cycle Rate

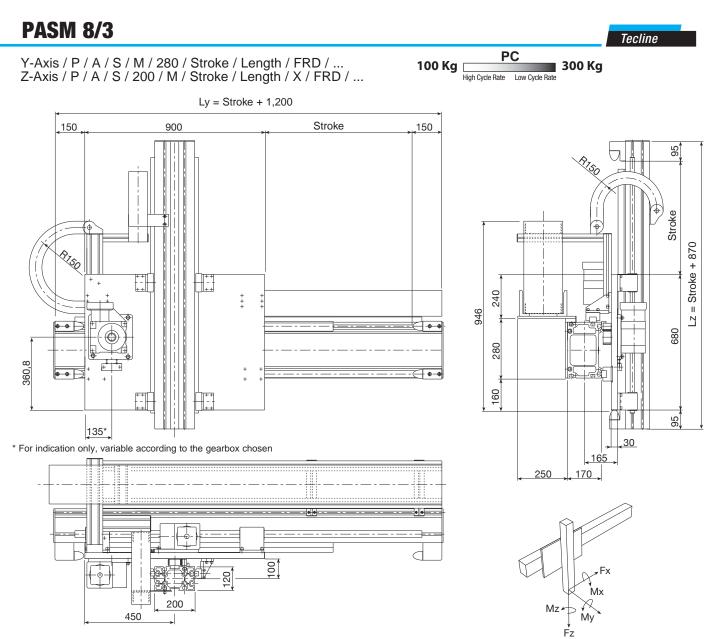
PC

Low Cycle Rate

🛯 300 Kg

Recommended max working conditions					
Model	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _z [N]
PAR 8/3	1520	1520	670	3100	4740

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept. The values shown can be achieved with roller slides with 6 rollers


suitable for maximum performance (see page 63-64).

Constructive data	Y-axis	Z-axis
Load-bearing beam (see page 15/17)	Pratyca	Valyda
Rack (tempered, helical teeth: module KTD)	module 4	module 3 [mm ²]
Guide rails	55x25 (hardened and polished)	35x16 (hardened and polished)
Translation	4 roller slides with 6 rollers Ø62	2 roller slides with 4 rollers Ø40
Room available for energy chain	175x45	75x45 [mm ²]
Pinion pitch diameter type ND	76.39 (as an alternative 106.10)	63.66 (as an alternative 89.13) [mm]

Weights	Y-axis	Z-axis	
"Base" model (stroke _x and stroke _z =0)	M _{base} = 23	32 approx.	[kg]
Slide (plates + carriages)	M _{slide} = 111 approx.		[kg]
Beam (incl. guide rails and rack)	$q_y = 66 \text{ approx.}$	$q_z = 35 \text{ approx.}$	[kg/m]

Formules:

Stroke_x and stroke_z [mm]

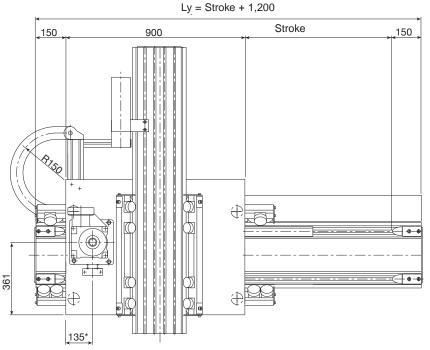
Performances	Y-axis	Z-axis	
Max. load (Pc max) with load or	haxis (Lz \leq	1,600 mm)	
Max. speed	2.5	2	[m/s]
Max. acceleration	2.5	3	[m/s ²]
Repeatability	-	±0.1*	[mm]
Beam max. length without joint	12000	12000	[mm]

Recommended max working conditions					
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _z [N]
PASM 8/	3 3,000	3,310	1,375	3,100	4,740

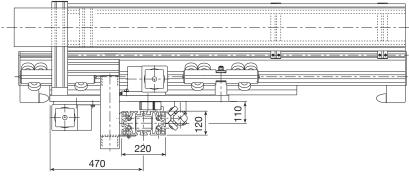
The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept. The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page 15/17)	Pratyca	Valyda	
Rack (tempered, helical teeth, ground: module KSD)	module 4	module 3	[mm ²]
Translation: 4 caged ball roller slides and guide rails	size 35	size 25	
Room available for energy chain	175x45	75x45	[mm ²]
Pinion pitch diameter (induction-hardened, ground - RD)	76.39 (as an alternative 106.10)	63.66 (as an alternative 89.13)) [mm]

Weights	Y-axis	Z-axis	
Base" model (stroke _x and stroke _z =0)	M _{base} = 220 approx.		[kg]
Slide (plates + carriages)	M _{slide} = 102 approx.		[kg]
Beam (incl. guide rails and rack)	q _y = 64 approx.	q _z = 34 approx.	[kg/m]

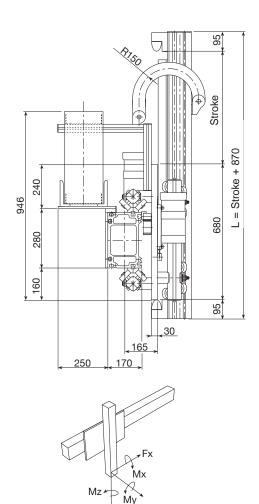

Formules:

Stroke_x and stroke₇ [mm]


PAR 8/6

Y-Axis / P / A / R / P / 280 / Stroke / Length / FND / ... Z-Axis / P / A / R / P / 220 / Stroke / Length / X / FND / ...

250 Kg High Cycle Rate PC 🛛 600 Kg Low Cycle Rate



* For indication only, variable according to the gearbox chosen

Performances	Y-axis	Z-axis	
Max. load (Pc max) with load or	n axis (Lz ≤	1,600 mm)	
Max. speed	2	2	[m/s]
Max. acceleration	2	2	[m/s ²]
Repeatability	-	±0.25*	[mm]
Beam max. length without joint	12000	12000	[mm]

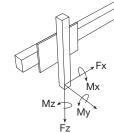
* Reference value considering a stroke of 1000 mm on Z axis.

Recommended max working conditions					
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _z [N]
PAR 8/6	2,430	2,430	1,200	3,220	8,400

_{Fz}

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept. The values shown can be achieved with roller slides with 6 rollers

suitable for maximum performance (see page 63-64).


Constructive data	Y-axis	Z-axis
Load-bearing beam (see page 15/17)	Pratyca	Logyca
Rack (tempered, helical teeth: module KTD)	module 4	module 4 [mm ²]
Guide rails	55x25 (hardened and polished)	55x25 (hardened and polished)
Translation	4 roller slides with 6 rollers Ø62	2 roller slides with 6 rollers Ø52
Room available for energy chain	175x45	75x45 [mm ²]
Pinion pitch diameter type ND	76.39 (as an alternative 106.10)	76.39 (as an alternative 106.10) [mm]

Weights	Y-axis	Z-axis	
"Base" model (stroke _x and stroke _z =0)	M _{base} = 2	60 approx.	[kg]
Slide (plates + carriages)	M _{slide} = 122 approx.		[kg]
Beam (incl. guide rails and rack)	$q_y = 66 \text{ approx.}$	$q_z = 52 \text{ approx.}$	[kg/m]

Formules:

Stroke_x and stroke_z [mm]

Recommended max working conditions					
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _z [N]
PASM 8/6	6 4,330	4,790	2,090	3,220	8,400

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept. The repeatability shown in the table can be achieved with a ground

rack and low-backlash gearboxes.

Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page 15/17)	Pratyca	Logyca	
Rack (tempered, helical teeth, ground: module KSD)	module 4	module 4	[mm ²]
Translation: 4 caged ball roller slides and guide rails	size 35	size 30	
Room available for energy chain	175x45	75x45	[mm ²]
Pinion pitch diameter (induction-hardened, ground - RD)	76.39 (as an alternative 106.10)	76.39 (as an alternative 89.13)	[mm]

[m/s]

[m/s²]

[mm]

[mm]

Weights	Y-axis	Z-axis	
Base" model (stroke _x and stroke _z =0)	M _{base} = 234 approx.		[kg]
Slide (plates + carriages)	M _{slide} = 102 approx.		[kg]
Beam (incl. guide rails and rack)	q _y = 64 approx.	$q_z = 46 approx.$	[kg/m]

Formules:

110

Z-axis

±0.15*

12000

2

2

20

Y-axis

12000

2

2

* Reference value considering a stroke of 1000 mm on Z axis.

220

Max. load (Pc $_{max}$) with load on axis (Lz \leq 1,600 mm)

470

Performances

Max. acceleration

Beam max. length without joint

Max. speed

Repeatability

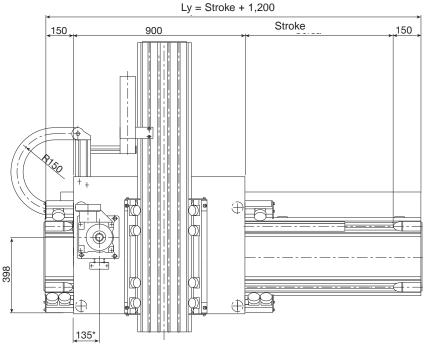
95

Stroke

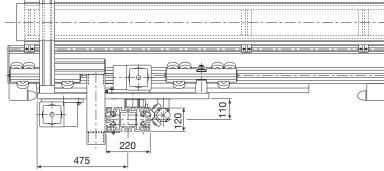
870

Stroke +

= Z

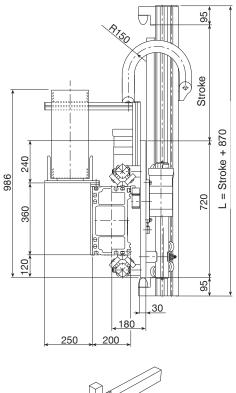

680

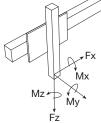
95


PAR 10/6

Y-Axis / P / A / R / P / 360 / Stroke / Length / FND / ... Z-Axis / P / A / R / P / 220 / Stroke / Length / X / FND / ...

300 Kg High Cycle Rate PC 🛛 600 Kg Low Cycle Rate



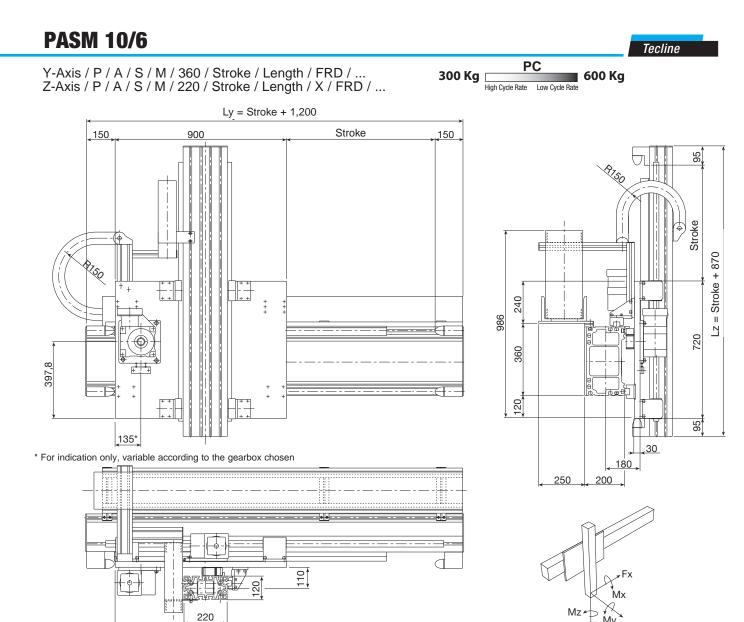

* For indication only, variable according to the gearbox chosen

475	→		
Performances	Y-axis	Z-axis	
Max. load (Pc max) with load or	n axis (Lz ≤	1,600 mm)	
Max. speed	2.5	2	[m/s]
Max. acceleration	2	2	[m/s ²]
Repeatability	-	±0.25*	[mm]
Beam max. length without joint	12000	12000	[mm]

* Reference value considering a stroke of 1000 mm on Z axis.

Recommended max working conditions						
Model	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _z [N]	
PAR 10	/6 2,435	2,435	1,200	3,185	8,400	

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.


The values shown can be achieved with roller slides with 6 rollers suitable for maximum performance (see page 63-64).

Constructive data	Y-axis	Z-axis
Load-bearing beam (see page 15/17)	Solyda	Logyca
Rack (tempered, helical teeth: module KTD)	module 4	module 4 [mm ²]
Guide rails	55x25 (hardened and polished)	55x25 (hardened and polished)
Translation	4 roller slides with 6 rollers Ø62	2 roller slides with 6 rollers Ø52
Room available for energy chain	175x45	75x45 [mm ²]
Pinion pitch diameter type ND	76.39 (as an alternative 106.10)	76.39 (as an alternative 106.10) [mm]

Weights	Y-axis	Z-axis	
"Base" model (stroke _x and stroke _z =0)	M _{base} = 2	83 approx.	[kg]
Slide (plates + carriages)	M _{slide} = 122 approx.		[kg]
Beam (incl. guide rails and rack)	q _y = 85 approx.	$q_z = 52 \text{ approx.}$	[kg/m]

Formules:

Stroke_x and stroke_z [mm]

Performances	Y-axis	Z-axis		
Max. load (Pc $_{max}$) with load on axis (Lz \leq 1,600 mm)				
Max. speed	2.5	2	[m/s]	
Max. acceleration	2	2	[m/s ²]	
Repeatability	-	±0.15*	[mm]	
Beam max. length without joint	12000	12000	[mm]	

475

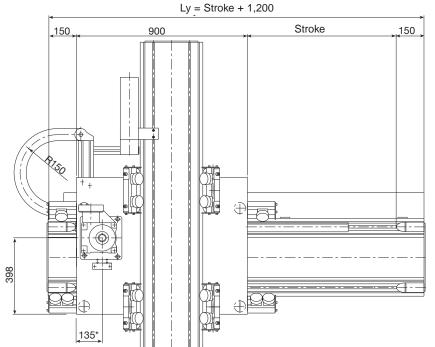
Recommended max working conditions						
Model	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _z [N]	
PASM10	/6 4,560	5,050	2,090	3,185	8,400	

Мy

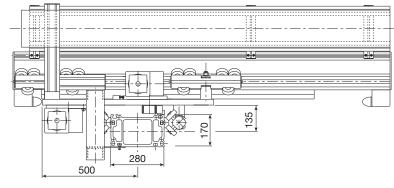
Fz

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept. The repeatability shown in the table can be achieved with a ground rack and low-backlash gearboxes.

Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page 15/17)	Solyda	Logyca	
Rack (tempered, helical teeth, ground: module KSD)	module 4	module 4	[mm ²]
Translation: 4 caged ball roller slides and guide rails	size 35	size 30	
Room available for energy chain	175x45	75x45	[mm ²]
Pinion pitch diameter (induction-hardened, ground - RD)	76.39 (as an alternative 106.10)	76.39 (as an alternative 89.13)	[mm]

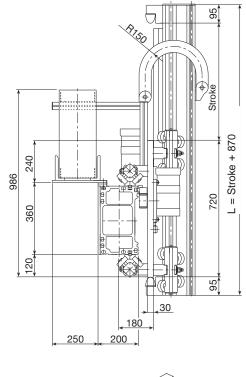

Weights	Y-axis	Z-axis	
Base" model (stroke _x and stroke _z =0)	M _{bas}	_e = 260 approx.	[kg]
Slide (plates + carriages)	M _{slid}	_e = 102 approx.	[kg]
Beam (incl. guide rails and rack)	q _y = 83 approx.	$q_z = 46 \text{ approx.}$	[kg/m]

Formules:


```
Stroke<sub>x</sub> and stroke<sub>7</sub> [mm]
```

PAR 10/8

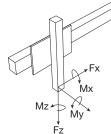
Y-Axis / P / A / R / P / 360 / Stroke / Length / FND / ... Z-Axis / P / A / R / P / 280 / Stroke / Length / X / FND / ...


* For indication only, variable according to the gearbox chosen

Performances	Y-axis	Z-axis	
Max. load (Pc max) with load or	n axis (Lz ≤	1,600 mm)	
Max. speed	2	2	[m/s]
Max. acceleration	2	2	[m/s ²]
Repeatability	-	±0.25*	[mm]
Beam max. length without joint	12000	12000	[mm]

* Reference value considering a stroke of 1000 mm on Z axis.

** With vertical positioning of the unit, a partial load capacity compensation is required


PC

Low Cycle Rate

High Cycle Rate

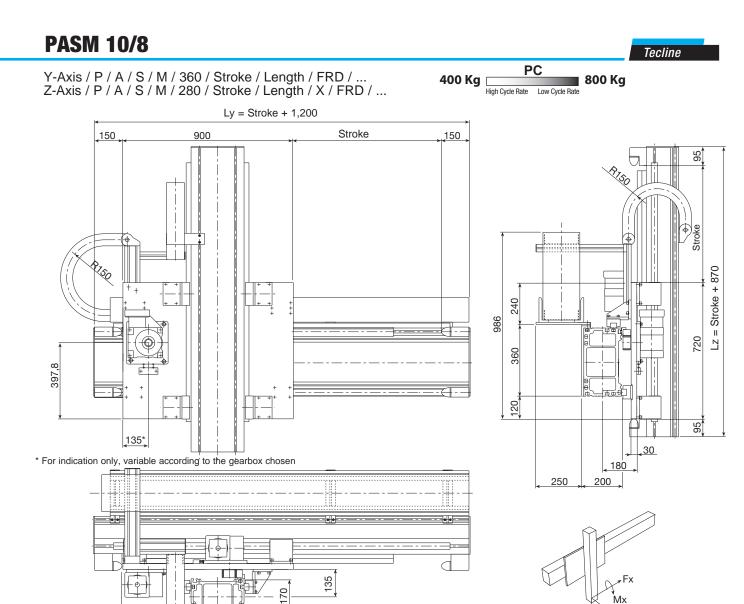
🛛 800 Kg

400 Kg

Recommended max working conditions							
Model	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _z [N]		
PAR 10	/8 6,900	7,335	4,590	3,250	11,140		

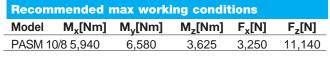
The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept.

The values shown can be achieved with roller slides with 6 rollers suitable for maximum performance (see page 63-64).


mm²]
mm²]
[mm]
1

Weights	Y-axis	Z-axis	
"Base" model (stroke _x and stroke _z =0)	M _{base} = 3	00 approx.	[kg]
Slide (plates + carriages)	M _{slide} = 12	2 approx	[kg]
Beam (incl. guide rails and rack)	q _v = 85 approx.	$q_z = 66 approx.$	[kg/m]

Formules:


Actual load: $P_{eff.} = P_{max}$ -(Lz - 1,600)/1,000• q_z < of Pc

Module total weight: $M_{tot}=M_{base}+(q_y \circ stroke_y+q_z \circ stroke_z)/1,000$ Stroke_X and stroke_Z [mm]

Max. load (Pc max) with load or	n axis (Lz	: ≤ 1,600 mm)	
Max. speed	2	2	[m/s]
Max. acceleration	2	2	[m/s ²]
Repeatability	-	±0.15*	[mm]
Beam max. length without joint	12000	12000	[mm]

Mz

F₇

Μv

The values shown above include a safety coefficient for automated machinery. They refer to maximum performance with each force acting individually. In case of peak forces acting together please consult our technical dept. The repeatability shown in the table can be achieved with a ground reak and how bedrach actions are the table can be achieved with a ground reak and how bedrach actions.

rack and low-backlash gearboxes.

Constructive data	Y-axis	Z-axis	
Load-bearing beam (see page 15/17)	Solyda	Pratyca	
Rack (tempered, helical teeth, ground: module KSD)	module 4	module 4	[mm ²]
Translation: 4 caged ball roller slides and guide rails	size 35	size 35	
Room available for energy chain	175x45	75x45	[mm ²]
Pinion pitch diameter (induction-hardened, ground - RD)	76.39 (as an alternative 106.10)	76.39 (as an alternative 106.10)) [mm]

Weights	Y-axis	Z-axis	
Base" model (stroke _x and stroke _z =0)	M _{base}	, = 275 approx.	[kg]
Slide (plates + carriages)	M _{slide}	, = 102 approx.	[kg]
Beam (incl. guide rails and rack)	q _y = 83 approx.	$q_z = 64 \text{ approx.}$	[kg/m]

Formules:

Stroke_x and stroke₇ [mm]

Steel V-shaped guide rails

Material: high-performance alloy steel: R > 900 MPa Hardened and tempered: core hardness 240 HB. Induction-hardened and polished. Track hardness > 58 HRC Guide rail 28.6x11 code 203.0012 has anti-oxidation coating. Anti-oxidation coating is available for all versions upon request.

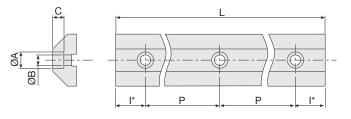
C	V-shaped guide rail 28.6x11	x y y y y y y y y y y			9000 9000 4,2
	Features	28.6x11	35x16	55x25	
	Moment of inertia Ix	2,148	7,932	41,906	mm⁴
	Moment of inertia ly	14,490	36,405	194,636	mm⁴

2

3.5

7.8

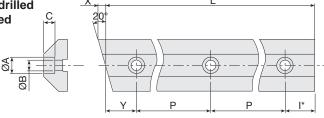
Kg/m


Machining: drilled guide rails with straight cut

Machining provided for guide rails with no joint. In addition to the code, please state the type of machining required by adding: - .L V-shaped guide rails, length L, not drilled

Weight

- **.LF** V-shaped guide rails, length L, **drilled**

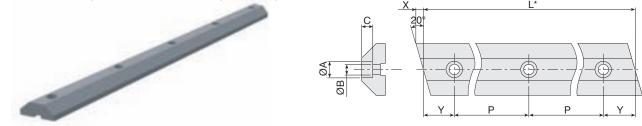

*: If "I" is more than 80 mm, a hole is added to the two ends of the guide rail. Centre-distance 20 for guide rails 203.0027/28; Center-distance 25 for guide rails 203.0122/0423

Size	Treatment Ma	ax. Length	Р	l	А	В	С	Code
28,6x11	hardened & tempered	3980	150	40	11	7	5	203.0008
28,6x11	hardened anti-oxidation	3980	150	40	11	7	5	203.0030
35x16	hardened & tempered	5900	150	25	11	7	7.5	203.0028
35x16	Induction-hardened	4000	100	50	11	7	7.5	203.0027
55x25	hardened & tempered	5900	200	50	18	11	11.5	203.0122
55x25	Induction-hardened	4000	150	25	18	11	11.5	203.0423

Machining: drilled guide rails with 1 bevel and 1 slanting cut

Machining provided for the crop down sizes of guide rail ends with joints. In addition to the code, please state the type of machining required by adding:

- .LX V-shaped guide rails with 1 slanting cut, length L, not drilled
- .LFX V-shaped guide rails with 1 slanting cut, length L, drilled


*: the first hole is drilled at a height of "Y", subsequent ones at a centre-distance of "P". If "I" is more than 80 mm, a hole is added to the end of the guide rail. Centre-distance 20 mm for guide rail 203.0027/28; Centre-distance 25 mm for guide rail 203.0122/0423.

Size	Treatment Ma	ax. Length	Р	Y	l.	Α	В	С	Code
28.6x1′	1 hardened & tempered	3,850	150	50	50	11	7	5	203.0008
28.6x1	1 hardened anti-oxidation	3,850	150	50	50	11	7	5	203.0030
35x16	hardened & tempered	5,900	150	25	25	11	7	7.5	203.0028
35x16	Induction-hardened	4000	100	50	50	11	7	7.5	203.0027
55x25	hardened & tempered	5,900	200	25	75	18	11	11.5	203.0122
55x25	Induction-hardened	4000	150	25	25	18	11	11.5	203.0423

Machining: drilled guide rails with 2 slanting cuts

Machining provided for the intermediate crop down sizes of guide rail ends with multiple joints. In addition to the code, please state the type of machining required by adding:

- .LXX V-shaped guide rails with 2 slanting cuts, length L, not drilled
- .LFXX V-shaped guide rails with 2 slanting cuts, length L, drilled

*: in order to maintain a constant hole pitch, arrange the guide rails so that the length "L" is equal to: n•P + 2•Y

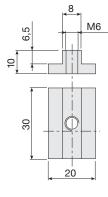
Size Treatment	Max. Length	Р	Y	Α	В	С	Code
28,6x11 hardened & tempere	d 3850	150	50	11	7	5	203.0008
28,6x11 indurita antioss.	3850	150	50	11	7	5	203.0030
35x16 hardened & tempered	5900	150	25	11	7	7.5	203.0028
35x16 Induction-hardened	4000	100	50	11	7	7.5	203.0027
55x25 hardened & tempered	5900	200	50	17	11	11.5	203.0122
55x25 Induction-hardened	4000	150	25	17	11	11.5	203.0423

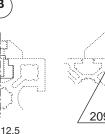
EXAMPLE OF ORDER: n° 2 pieces cod203.0027 / 5150 . LFX + n°1 piece 203.0027 / 5840 . LFXX

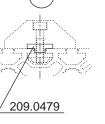
Δ

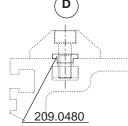
Machining
 Length

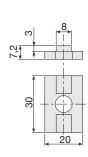
V-shaped guide rail assembly inserts

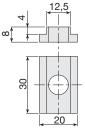

Material: C40 galvanized steel.


A and C: suitable for medium profiles (see pages 14 - 15) B and D: suitable for load-bearing profiles (see pages 15 to 17)


В


8 1 M6


20


ŝ

20

*:Special drilling for M8 screws instead of M10 is required.

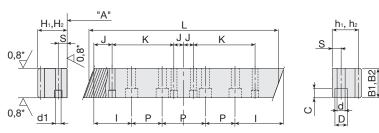
	Guide rails	Slot side	Screw	Code
Α	35x16	8	M6x20	209.0298
В	35x16	12.5	M6x25	209.1855
C*	55x25	8	M8x30	209.0479
D	55x25	12.5	M10x30	209.0480

Profiles equipped with assembled V-shaped guide rails (order codes)

For the profile specifications see from page 12 to page 17, for guide rails: page 56, for inserts: page 57.

	L						
-		hard.&temp.	hardened	hard.&temp.	Inducthard.	hard.&temp.	Inducthard.
	Profile	Guide rail 203.0008	203.0030	203.0028	203.0027	203.0122	203.0423
	E01-3	237.0029	237.0030	237.0013	237.2398	-	-
\$\$\$	F01-1	237.0031	237.0032	237.0014	237.0015	-	-
	F02-1	237.0033	237.0034	237.0016	237.0017	-	-
	E01-4	237.0035	237.0036	237.0018	237.0019	-	-
\$2030\$\$	MA1-3	237.0037	237.0038	237.1387	237.1388	-	-
	MA1-5	237.0039	237.0040	237.1141	237.1142	-	-
<u>PDP</u>	E01-5	237.0041	237.0042	237.0027	237.0028	-	-
	STATYCA	237.0043	237.0044	237.2159	237.2158	237.2301	237.0005
21 <u>-</u> 12	VALYDA	237.0045	237.0046	237.2126	237.2013	237.0004	237.1542
	LOGYCA	237.0047	237.0048	237.0020	237.2421	237.0021	237.0022
<u>fill</u>	PRATYCA	237.0049	237.0050	237.0023	237.0024	237.2157	237.1543
	SOLYDA	237.0051	237.0052	237.0025	237.0026	237.0002	237.0006
Order code:	<u>237.XX</u>	<u>(X</u> - <u>XX</u> / <u>L</u>		- Guide rail an	d profile lengt	h	

- Special profile machining (see page 83)


- Table code

Racks

Helical teeth

Rack with helical teeth, right-hand 19° 31' 42", pressure angle 20°.

*Surface machining $\underline{\textbf{not available}}$ on KBD, KTD versions

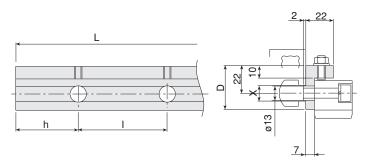
Туре		Rs	Hardness tooth	Quality	Precision
KBD	CK45 normalized milled	650 N/mm ²	-	Q8	0.085mm/300mm
KTD	CK45 normalized induction-hardened teeth	650 N/mm ²	≥ HRC 56	Q9	0.085mm/300mm
KSD	CK45 norm. induction-hard., teeth and ground sides	> 650 N/mm ²	≥ HRC 56	Q6	0.025mm/300mm
KRD	AISI 9840 alloy steel inducthard., teeth and ground sides	> 900 N/mm ²	HRC 60 c.a.	Q6	0.025mm/300mm

Mod	I. Hi	H2	B1	B2	L		J	d	D	С	d1(H7)	S	h1	h2	Р	K	kg	Codice
2	25	24	25	24	500	62.5	35	7	11	7	6	8	23	22	125	430	2.2	211.2429
2	25	24	25	24	1,000	62.5	35	7	11	7	6	8	23	22	125	430	4.3	211.2363
3	30	29	30	29	500	62.5	35	10	15	9	8	9	27	26	125	430	3.0	211.2367
3	30	29	30	29	1,000	62.5	35	10	15	9	8	9	27	26	125	430	6.1	211.2351
4	40	39	40	39	500	62.5	35	10	15	9	8	12	36	35	125	430	5.5	211.2366
4	40	39	40	39	1,000	62.5	35	10	15	9	8	12	36	35	125	430	10.9	211.2349

H1 h1 for racks KBD, KTD H2 h2 for racks KRD, KSD B1 for racks KBD,KTD, B2 for racks KRD, KSD

EXEMPLE OF ORDER:

code 211.2367 / KSD


L

------- Tooth and treatment characteristics

Adjusting plates for racks

Material: 6082 clear anodized aluminium alloy

۵

Ö Ø

Module	D	L	1.1	h	N° holes	X	Weight [kg]	Code
2	35	243	126.1	56.35	2	8	0.3	215.0025
2	35	491	126.1	56.35	4	8	0.6	215.0026
2	35	243	126.1	56.35	2	12.5	0.3	215.0027
2	35	491	126.1	56.35	4	12.5	0.6	215.0028
3	35	243	126.1	56.35	2	8	0.3	215.2368
3	35	491	126.1	56.35	4	8	0.6	215.2137
3	35	243	126.1	56.35	2	12.5	0.3	215.2369
3	35	491	126.1	56.35	4	12.5	0.6	215.2281
4	39	243	125.3	57.55	2	12.5	0.3	215.2243
4	39	491	125.3	57.55	4	12.5	0.6	215.2078

Pinion Gears

Straight or helical toothed pinions (19° 31' 42" left-hand). Pressure angle 20°. Fig. B Х b

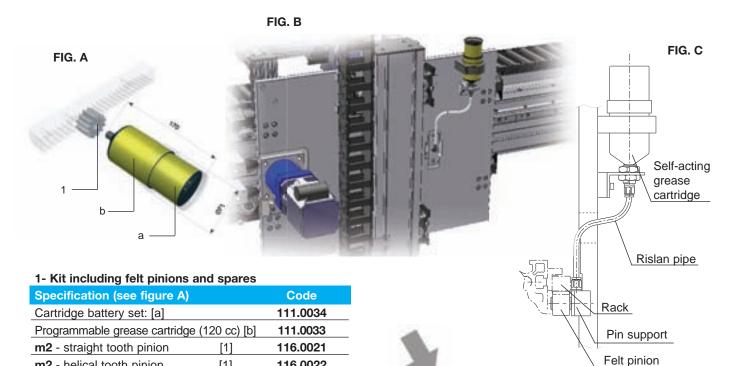
(1112)			xparas	_ + _	
Туре	Material	Surface treatment	RS	Quality	Tooth hardness
ND Pinion with helical teeth	Special steel	tempered and hardened	>900 N/mm ²	Q8	HRC 50
RD Pinion with ground helical teeth	16MnCr5	temp. induction-hardened	>900 N/mm ²	Q7	HRC 60

Helical tooth pinion

mod.	Weight	Z	Øp	Øi avail.	b	X	Code
2	0.2	21	44.56	22	28	56	201.0005
2	0.6	30	63.66	22,30,32	28	56	201.0012
3	0.8	20	63.66	22,25,30,32	28	65	201.0007
3	1.4	28	89.13	25,30,32	28	65	201.0013
4	1.5	18	76.39	32	40	75	201.0009
4	2.8	25	106.10	55	40	80	201.0014

EXEMPLE OF ORDER:

code 201.0007 /ND / 25


Inner diameter (Øi)

Features and treatment

Programmable Automatic Rack Lubrication System

Grease is delivered by means of an electromechanically controlled device with replaceable battery (average life: ca. 1 year) (a). The grease is spread evenly on the racks through the specific pinion (1). You will need one kit per rack. Kit: - for complete standard systems assembled on-site, the kit includes the products listed in Fig. C (e.g.: Fig. B);

- spare parts are those shown in Fig. A (codes in table 1);

2 - Complete	self-acting	lubrication	system

Specification (see figures B and C)	Code
Complete kit	136.0003

Table for selecting maximum operating torque

[1]

[1]

[1]

[1]

[1]

Table 1 – With lubrication guaranteed under ideal load conditions, dynamics, (1 m/s) with rigid pinion support [Nm].

116.0022

116.0012

116.0025

116.0023

116.0024

	Pinion / Racks - Helical tooth								
Module	Z [n°]	Øp [mm]	KBD	KTD	KFD/KSD	KRD			
2	21	44.56	42	1 40	150	200			
2	30	63.66	55	190	205	265			
2	4 20	63.66	100	370	400	500			
3	21 28	89.13	240	475	500	650			
4	18	76.39	250	810	880	1000			
4	25	106.1	460	1100	1150	1500			

Example of simplified calculation

m2 - helical tooth pinion

m3 - straight tooth pinion

m3 - helical tooth pinion

m4 - straight tooth pinion

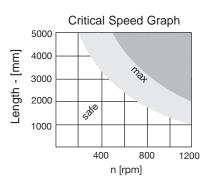
m4 - helical tooth pinion

To obtain the working torque value, divide the maximum operating torque (Tab. 1) by the safety factor (Tab. 2). Intermediate values can be adjusted according to the application.

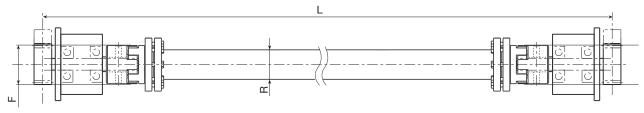
Motion (A) = High shock 1.75 Speed (B) = Low 1	Motion (A)	Speed (B)	Lubrcation (C)	Safety fac. (AxBxC)
Lubrication (C) = Constant <i>0.9</i> Rack = module 3 KTD	Low shock 1.25	Low 1	Constant 0.9	1.13
Pinion = $Øp$ 63.66 (370 Nm)	Medium shock 1.5	Medium 1.25	Daily 1.2	2.25
Safety factor = $A \times B \times C = 1.575$	High shock 1.75	High <i>1.5</i>	Monthly 2.5	6.56

Tab.2

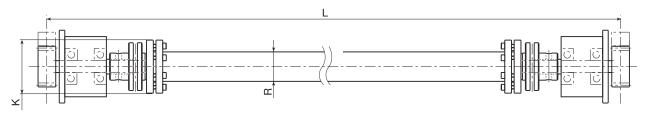
TL-61

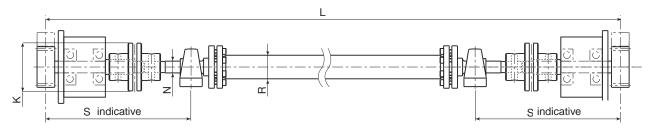

Maximum transmissible torque = Maximum torque 370 / Safety factor 1,575 ≤ 235 Nm

For heavy-duty applications, please ask our technical dept. to carry out the appropriate checks.


Connection shafts

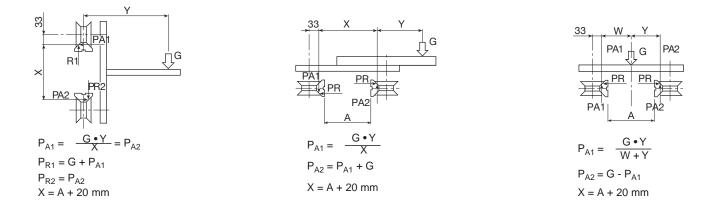
The Tecline range includes a series of hollow shafts for connecting the pinions on the systems. We can supply standard connections, according to your application requirements. The complete kit includes all the components needed to make the connection, with shrink-discs and crop down sizes of pins for insertion into the pinions.




Type 1 - Elastic joint with connecting shaft, suitable for low speeds with center-distance and length of up to 2 m.

Type 2 - Stainless steel blade joint connecting shafts, for backlash-free transmissions

Type 3 - Stainless steel blade joint connecting shafts and support bearings, suitable for backlash-free transmissions

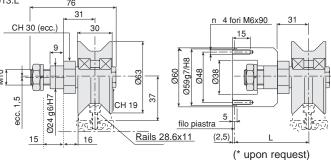


R(*)) K	F	Ν	S	Lmax	MTwork [Nm]	Mom. of inertia [kgm ²]	Type 1: Code/L	Type 2: Code/L	Type 3: Code/L
40	67	55	20	200	6,200	20	0.0028 + 0.46 × L. ×10 ⁻⁶	436.0948	436.0957	436.0965
50	81	65	25	235	6,300	35	0.0092 + 0.66 × L. ×10 ⁻⁶	436.0949	436.0958	436.0966
50	93	80	25	235	6,300	70	0.0161 + 1.34 x L. x10 ⁻⁶	436.0951	436.0971	436.0974
70	104	95	25	235	6,400	100	0.0293 + 2.93 x L. x10 ⁻⁶	436.0952	436.0960	436.0968
80	126	120	25	250	6,400	190	0.0793 + 4.5 × L. ×10 ⁻⁶	436.0955	436.0963	436.0984
90	143	-	-	-	6,500	300	0.1456 + 6.53 x L. x10 ⁻⁶	-	436.0986	436.0987
110	185	-	-	-	6,000	420	0.3499 + 12.3 x L. x10 ⁻⁶	436.0144	436.0145	436.0146

(*) R: Shaft material and diameter are selected in accordance with required speed, centre-distance L, torque and accuracy.

Rollers and V-shaped guide rails 28.6x11 and 35x16

Material: Hardened and burnished C45 steel covering; burnished steel pins and bolts. Rollers with shaped plastic cover are available upon request. Rollers with longer centre-distance L can be supplied. The use of hardened guide rails is preferable.

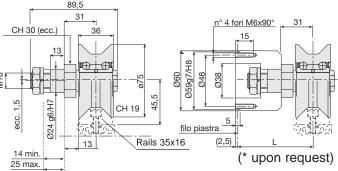


V-shaped rollers (Guide Rails 28.6 x 11) anti-oxidized version

Shaped rollers with radial or angular contact bearings (medium version). Also available in the light anti-oxidation version: with radial bearings: code stainless steel

* IMPORTANT: upon request, spacers can be supplied to increase the centre-distance between the guide rail and the roller supporting surface. In addition to the roller code, please indicate the required centre-distance (L). e.g. 205.0013.L 76

Roller code anti-oxidation treatment and stainless steel bearings: additional code NXE

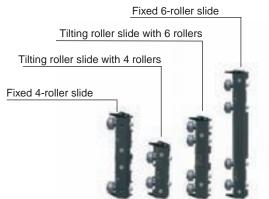

Version	Туре	Bearing	C(1bear.)	Cw (2bear.)	C0w (2bear.)	PR[N]	PA[N]	Speed [mm/s]	Weight [kg]	Code
Medium	Conc.	angular contact	7,800	9,600	4,800	1,400	600	2,500	0.8	205.0013
Medium	Exc.	angular contact	7,800	9,600	4,800	1,400	600	2,500	0.8	205.0014

V-shaped rollers [rails 35 x 16] integrale

Shaped rollers with two rows of angular contact ball bearings. With bilateral sliding sealing rings. Accuracy class P6. They support loads along the axis of the pin provided Pa eff < 0.4 Pr eff.

* IMPORTANT: upon request, spacers can be supplied to increase the centre-distance between the guide rail and the roller supporting surface. In addition to the roller code, please indicate the required centre-distance (L). e.g. 205.0011.L

Туре	Bearing	С	C0 (2bear.)	PR[N]	PA[N]	Speed [mm/s]	Weight [kg]	Code
Conc.	angular contact	21,000	13,900	4,500	1,800	2,500	1	205.0011
Exc.	angular contact	21,000	13,900	4,500	1,800	2,500	1	205.0012


Tecline

Roller slides

Ø40 roller slides with 2 or 3 rollers, aluminium alloy castings (Rs=280 N/mm2). Ø30, Ø40, Ø52 and Ø62 roller slides with 4 or 6 rollers, extruded aluminium alloy (Rs=310 N/mm2). Alloy steel pins (Rs=800 N/mm2) Rollers with double rows of angular contact ball bearings, long-life.

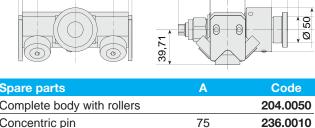
Roller slides Ø40 (V-shaped 35x16) - Ø30 (guide rail 28.6x11)

Roller slides Ø52 and Ø62 (V-shaped 55x25)

56

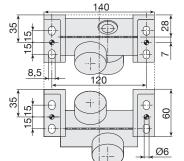
1,5 38

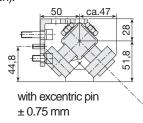
18


1,5

Ø30

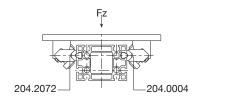
Important: remove the space washers to enable self-alignment of the roller slide

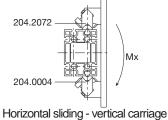

Α	Weight [kg]	Code
75	1.8	204.0052
75	1.8	204.0053
50	1.4	204.0054
50	1.4	204.0055
	75 75 50	75 1.8 50 1.4

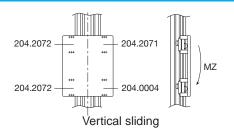

Spare parts	Α	Code
Complete body with rollers		204.0050
Concentric pin	75	236.0010
Excentric pin (±1 mm)	75	236.0011
Concentric pin	50	236.0014
Excentric pin (±1 mm)	50	236.0015

2 Roller slides Ø40 for V-shaped guide rails 35x16

Please follow the diagrams below to ensure correct assembly. To make up for the tolerances in the profile shapes, use pins to lock carriages with eccentric rollers after placing them in the appropriate position. (With the eccentric pins in the neutral position).

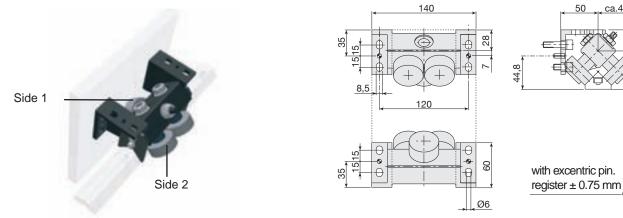






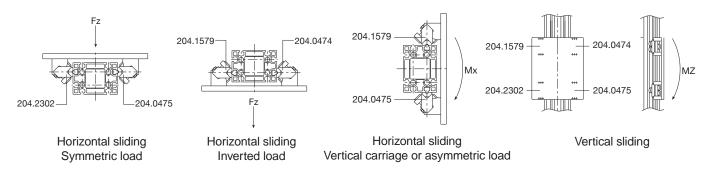
Roller side 1	Roller side 2	Specification	Weight [Kg]	Code
Concentric	Concentric	2-rollers carriage Ø40 - concentric	1	204.2072
Excentric	Concentric	2-rollers carriage Ø40 - 1 exc. side 1	1	204.2071
Concentric	Excentric	2-rollers carriage Ø40 - 1 exc. side 2	1	204.0004
Excentric	Excentric	2-rollers carriage Ø40 - excentric	1	204.0019

Application diagram common to 2-roller slides

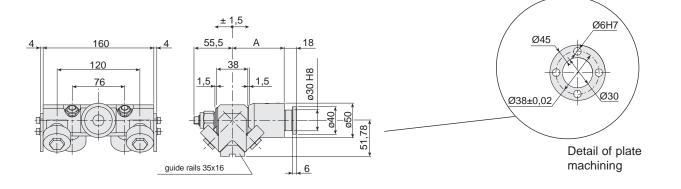


38 ω 51,

ca.47


3-Roller slides Ø 40 for V-shaped guide rails 35x16

Please follow the diagrams below to ensure correct assembly. To make up for tolerances in the profile shapes, use pins to lock carriages with eccentric rollers after placing them in the appropriate position. (With the eccentric pins in the neutral position).


Rollers side 1	Rollers side 2	Specification	Weight [kg]	Code
1 concentric	2 concentric	3-rollers carriage Ø40 - concentric	1.3	204.1579
1 eccentric	2 concentric	3-rollers carriage Ø40 - 1 exc. side 1	1.3	204.0474
2 concentric	1 concentric	3-rollers carriage Ø40 - concentric	1.3	204.2302
2 concentric	1eccentric	3-rollers carriage Ø40 - 1 exc. side 2	1.3	204.0475

Application diagram common to 3-roller slides

Tilting roller slides with 4 rollers Ø40 for V-shaped guide rails 35x16

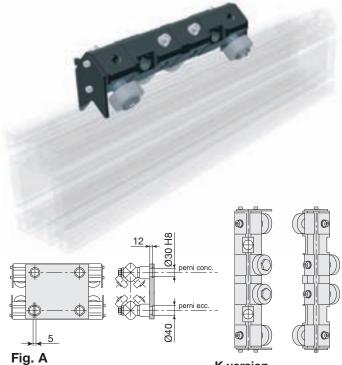
Use the roller slide eccentric pin to adjust the backlash along the plane between the guide rails.tino.

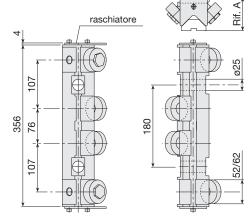
Important: remove the spacer washers to enable self-alignment of the roller slide

	Α	Weight [kg]	Code	Spare parts	Α	Code
Slide with eccentric stud (±1 mm)	75	2.2	204.0016	Complete body with rollers		204.001
Slide with eccentric stud (±1 mm)	50	1.8	204.0033	Eccentric stud (±1 mm)	75	236.001
				Example stud (4 mars)	50	000 004

All pins are eccentric, but are made concentric by inserting the pin in the specific hole on the plate, in order to determine the required preload.

	204.0013
75	236.0011
50	236.0015


Fixed 4-roller slide Ø40 for V-shaped guide rails V 35x16


Use the roller slide eccentric stud to adjust the backlash along the plane between the guide rails. Important: machine the pin clamping plate as shown in Fig. A ± 1,5 Sliding washer Important: remove the space washers to enable self-alignment of the В 55,5 А 18 roller slide Sliding washers 4 С 38 D 1,5 ø30 H8 Е 2 2 V-shaped 35x16 6 Ø30 H8 12 perni conc Fig. A perni ecc. 040 5

	Α	Code	R. slide spare parts (2)	В	С	D	E	Code
Roller slide L=370 complete with concentric pin 7	75	204.0017	Roller slide L=370	370	320	276	180	204.0005
R. slide L=370 complete with exc. pin (\pm 1 mm) 7	75	204.0018	Roller slide L=600	600	550	506	410	204.0026
Roller slide L=600 complete with concentric pin 7	75	204.0027	_					
R. slide L=600 complete with exc. pin $(\pm 1 \text{ mm})$ 7	75	204.0028	Pin spare parts (1)		Α	Weigh	t [kg]	Code
Roller slide L=370 complete with concentric pin 5	50	204.0030	Concentric pin		75	4.1		236.0010
R. slide L=370 complete with exc. pin $(\pm 1 \text{ mm})$ 5	50	204.0031	Eccentric stud (± 1 mm	n)	75	4.1		236.0011
Roller slide L=600 complete with concentric pin 5	50	204.0034	Concentric pin		50	3.5	5	236.0014
R. slide L=600 complete with exc. pin (\pm 1 mm) 5	50	204.0035	Eccentric stud (± 1 mn	n)	50	3.5	5	236.0015

E type roller slides (roller Ø52) and F type (roller Ø62) for V-shaped guide rails 55x25

4-Stiff Rollers slide. Suitable for mounting stud: **Type 7-8** Use the roller slide eccentric stud to adjust the backlash along the plane between the guide rails. Important: machine the pin clamping plate as shown in Fig. A

Ø Rollers	Rif. A
Rollers Ø52	71.75
Rollers Ø62	78.85

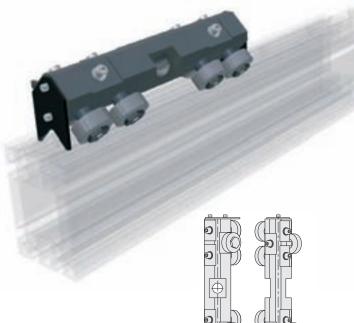
Technical caracteristics	Ø52	Ø62
N° rollers	4	4
Weight [kg.]	4.6	5.2
Spare parts code	204.1518	204.1519

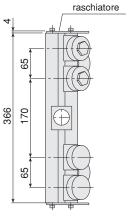

K version inverted roller position see page 63

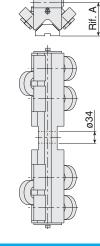
Type G roller slides (roller Ø52) and H type (roller Ø62) for V-shaped guide rails 55x25

Tilting 4-roller slides Suitable for assembly pins: Type 9

Use the roller slide eccentric pin to adjust the backlash along the plane between the guide rails.





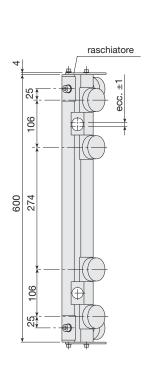

Ø Rollers		Rif. A
Roller Ø52		71.75
Roller Ø62		78.85
Technical caracteristics	s Ø52	Ø62
N° roller	4	4
Weight [kg.]	3,2	3.8
Spare parts code	204.1520	204.1521

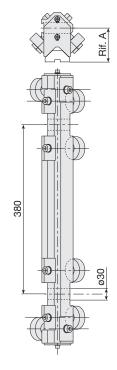
I-type roller slides (roller Ø52) and L-type (roller Ø62) for V-shaped guide rails V 55x25

Tilting 4-roller slides Suitable for assembly pins: **Type 9** Use the roller slide eccentric pin to adjust the backlash along the plane between the guide rails.

Ø Roller	Rif. A
Roller Ø52	71.75
Roller Ø62	78.85

Technical caracteristics	Ø52	Ø62
N° rollers	6	6
Weight [kg.]	4.9	5.9
Spare parts code	204.1522	204.1523


K version inverted roller position see page 63


P-type roller slides (rollers Ø52) and Q-type (rollers Ø62) for V-shaped guide rails 55x25

Fixed 4-roller slides Suitable for assembly pins: **Type 10-11-12** Use the roller slide eccentric bin to adjust the backlash along the plane between the guide rails.

K Version inverted roller position see page 63

Technical caracteristics	Ø52	Ø62
N° rollers	6	6
Weight [kg.]	4.9	5.9
Spare parts code	204.2086	204.2283

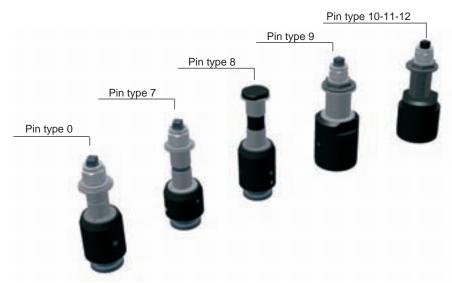
Spare roller with stud

Make sure that all the components are locked in place with the appropriate screws. The recommended tightening torque for pin locking screws and nuts is 50 Nm.

Max. load factors for hardened and tempered guides

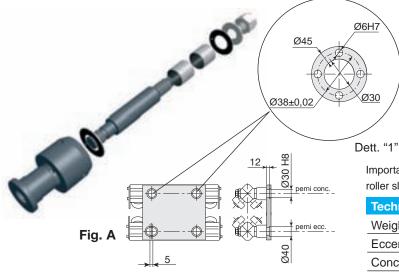
mux. Total hotors for hardened and tempered guides						
Roller	Cw [N]	C0w[N]	Fr amm.[N]	Max. S.		
Ø30	5,000	3,000	1,350	7 m/s		
Ø40	9,800	6,200	2,500	7 m/s		
Ø52	15,800	10,500	4,250	6 m/s		
Ø62	21,100	14,500	5,300	5 m/s		

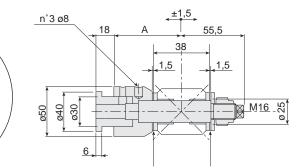
Max. load factors for induction-hardened guides


				0
Roller	Cw [N]	C0w[N]	Fr amm.[N]	Max. S.
Ø30	5,000	3,000	400	2 m/s
Ø40	9,800	6,200	800	13 m/s
Ø52	15,800	10,500	1,400	2.5 m/s
Ø62	21,100	14,500	1,900	2 m/s

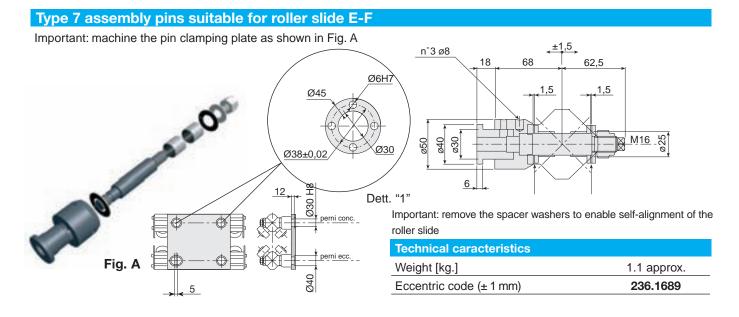
Spare roller with pin	Weight [kg]	Code
Ø30 Concentric	0.02	406.0056
Ø40 Concentric	0.22	205.0464
Ø40 Excentric (± 0.75 mm)	0.25	205.0463
Ø52 Concentric	0.4	205.0163
Ø62 Concentric	0.55	205.0165

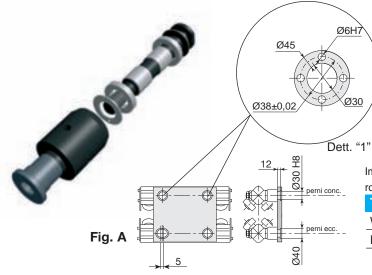
Assembly Studs

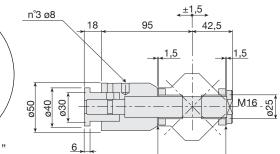

Tecline


Material: burnished steel (Rs=800 N/mm2). Special variants upon request. AISI 303 stainless steel versions are available upon request. Types 0-7-8-9 are complete with self-lubricating bushings to make roller slide self-adjustments easier.

Type 0 assembly pins suitable for roller slide Ø30 and Ø40

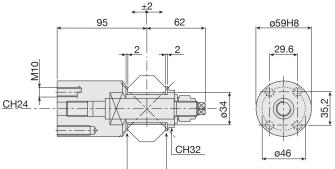

Important: machine the pin clamping plate as shown in Fig. A




Important: remove the spacer washers to enable self-alignment of the roller slide

Technical caracteristics	Α	
Weight [kg.]		1.1 approx.
Eccentric code (± 0,75 mm)	75	236.0011
Concentric code (± 0,75 mm)	50	236.0015

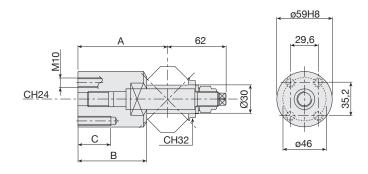
Assembly pins type 8 suitable for carriage E-F



Important: remove the spacer washers to enable self-alignment of the roller slide

Technical caracteristics	
Weight [kg.]	1.8 approx.
Excentric code (± 1 mm)	236.1691

Type 9 assembly pins suitable for tilting roller slides G-H / I-L



Important: remove the spacer washers to enable self-alignment of the roller slide

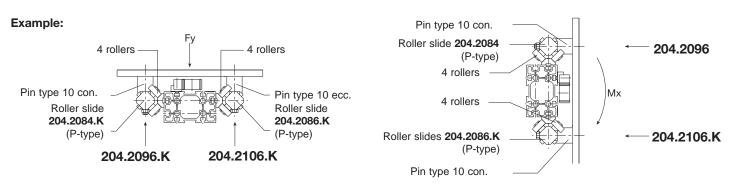
Technical caracteristics	
Weight [kg.]	2 approx.
Concentric code	236.2076
Excentric code (± 1,5 mm)	236.2079

Type 10-11-12 assembly pins suitable for tilting roller slides A-D / P-Q

Туре	e A	В	С	Weight [kg]	Conc.code	Exc. code
						(± 1.5 mm)
10	95	73	35	2	236.2082	236.2083
11	87	65	27	1.8	236.2088	236.2089
12	78	56	18	1.7	236.2090	236.2091

Order code table for roller slides and pins

6	
10	
1	
Ca	
2	


\oplus	
•	

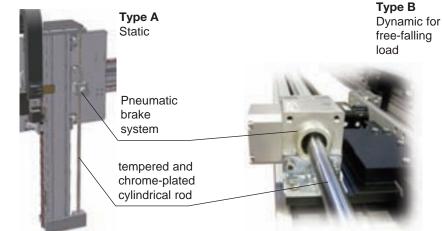
Tecline

		Roller s	i. E	F	G	н	I.	L	Р	Q
	Pin	Ø roller	52	62	52	62	52	62	52	62
68 69,5	-	con.	204.1314	204.1318	-	-	-	-	-	-
	7	exc.	204.1344	204.1348	-	-	-	-	-	-
95 42,5	8	con.	204.1315	204.1319	-	-	-	-	-	-
		exc.	204.1345	204.1349	-	-	-	-	-	-
(95) <u>62</u> 93	9	con.	-	-	204.2092	204.2093	204.2094	204.2095	-	-
		exc.	-	-	204.2102	204.2103	204.2104	204.2105	-	-
(95) 62	10	con.	-	-	-	-	-	-	204.2096	204.2097
		exc.	-	-	-	-	-	-	204.2106	204.2107
(87) <u>62</u> 85	11	con.	-	-	-	-	-	-	204.2098	204.2099
		exc.	-	-	-	-	-	-	204.2108	204.2109
(78) 62	12	con.	-	-	-	-	-	-	204.2100	204.2101
		exc.	-	-	-	-	-	-	204.2110	204.2111

Assembly of standard carriages / K version carriages

IMPORTANT: for applications with high projecting loads, the rollers of the slides must be adjusted so that the load is supported by the maximum possible number of rollers. If this means arranging the rollers symmetrically with respect to the standard roller slide version, please add the letter K at the end of the code when filling in the order form. However, the roller assembly can also be inverted at a later date, by disassembling the pins and rollers and then **reassembling them in the opposite way.**

Anti-drop safety device with pneumatic brake system


Ant-droop safety devices, available in a range of sizes, are supplied according to the type of application. For instance, they can act as a mechanical stop to block the free-falling load at any stroke point, or as a lock in static conditions at any position. Two-way blocking occurs following an unexpected pressure drop.

A mechanical safety release system is available on request (patented). Catalogue available upon request.

The kit includes: braking device and rod with relative supports, micro-switch. Solenoid valve available upon request.

Operating pressure 3-6 Bar. With no pressure = locked.

1- Static rod blocking device

Тур	be Codice	Rod Blocking force [N]	Stroke [mm]
Α	236.0018	/ 1,200	/
Α	236.0018	/ 1,900	/
Α	236.0018	/ 3,000	/
Α	236.0018	/ 5,400	/
Α	236.0018	/ 7,500	/
Α	236.0018	/ 12,000	/

Emergency brake for free-falling load

1- Dynamic rod blocking device					
Туре	Code	Rod Blocking force [N]	Stroke [mm]		
В	236.0019	/ 3,000	/		
В	236.0019	/ 5.400	/		
В	236.0019	/ 7,500	/		
В	236.0019	/ 12,000	/		

Safety lock-pin (stopper cylinder)

Lock-pins are available in two sizes to block the vertical axes in the safety position to allow horizontal movements during maintenance. The safety lock-pins comprise the use of the through rod. Select the size according to the load. The kit includes: drilled plate for rod, stopper cylinder, micro-switch and 2 magnetic gearboxes. Max. operating pressure: 10 bar.

Special plate on request on request on request C + corsa Drilled plate

2- Accessory: drilled plate for rod						
ØD Rod	Base	Width	Thickness			
20	60	100	39			
32	60	100	39			

1- Safety	lock-pin		
	Stroke	С	E

ØD Rod	Stroke	С	Е	F	G	Kit Code
20	20	60.5	50	38	16	236.0021
32	30	-	-	-	-	236.0022

PVS[®] with round head and orthogonal milling

PVS® connecting elements with round anchor head and orthogonal milling that can be inserted frontally into the slots to join two orthogonal profiles.

	60	-	-	-	F20-20
8	50	-	-	A20-20	A20-20
rofile	45	-	E20-20	E20-20	E20-20
Pre	30	B20-20	B210-20	B210-20	B210-20

45

50

60

Α

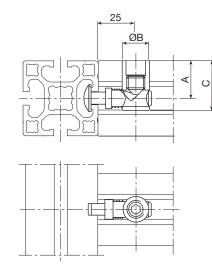
30

PVS[®] with round head and parallel milling

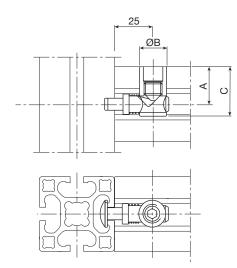
PVS® connecting elements with round anchor head and parallel milling that can be inserted frontally into the slots to join two orthogonal profiles.

Profile base

A wheelbase


C profile milling


B Ø milling


	Profile A	30	45	50	60
	60	-	-	-	F20-10
B	50	-	-	A20-10	A20-10
rofile	45	-	E20-10	E20-10	E20-10
P	30	B20-10	B210-10	B210-10	B210-10

В

Profile base	30	45	50	60
A wheelbase	15	22.5	25	30
B Ø milling	15.1	18.1	18.1	18.1
C profile milling	22	30.5	33	38

30

15

15.1

22

45

22,5

18.1

30.5

50

25

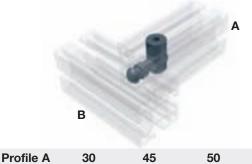
18.1

33

60

30

18.1


38

)	50
	45
	00
	30

Profile A

PVS[®] with general-purpose round head

PVS® connecting elements with round anchor head, to be inserted into the slot at the beginning of the profile, to join two orthogonal profiles in any position.

-

-

E20-90

B20-90

Profile base	30	45	50	60
A wheelbase	15	22.5	25	30
B Ø milling	15.1	18.1	18.1	18.1
C profile milling	22	30.5	33	38

PVS® with threaded head

-

-

-

B20-90

60

45

30

Profile B 50

PVS® connecting elements with threaded anchor head, for fixing to plates or other assemblies.

-

A20-90

E20-90

B20-90

60


F20-90

A20-90

E20-90

B20-90

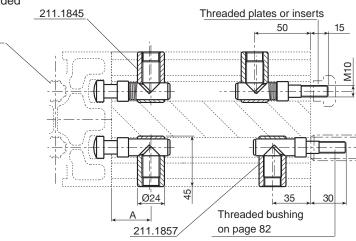
		M6	M8
	60		F20-60
e	50		A20-60
rofile	45	-	E20-60
Ē	30	B20-66	B20-60

15	22.5	25	00
10	22,5	25	30
15.1	18.1	18.1	18.1
22	30,5	33	38

Special PVS[®]

PVS® connecting elements with round head for fixing small/medium size profiles to beams.

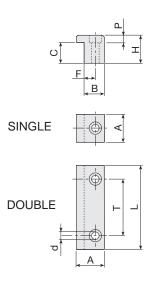
<25 →	
ØB	
	
J	I

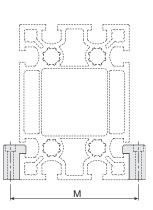

Profile A	load-bearing profile
60	211.0012
n 50	211.1849
e 45	211.0023
<mark>ב 40</mark>	211.0018

Profile base	30	45	50	60
A wheelbase	15	22.5	25	30
B Ø milling	15.1	18.1	18.1	18.1
C profile milling	22	30.5	33	38

PVS® for profiles STATYCA, VALYDA and LOGYCA

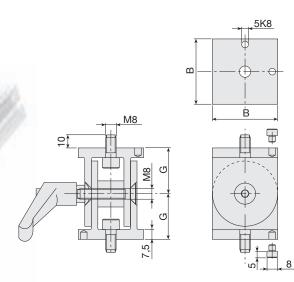
PVS® connecting elements with round anchor head and threaded head for beams and plate assembly.


Tecline


Profile 1	Α
LOGYCA and VALYDA	35
STATYCA	38
Threaded version code	211.1857
Round head version code	211.1845

Profile anchor brackets

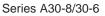
Material: alluminium alloy (Rs=310 N/mm²).


Profile	Α	L	т	d	Н	Ρ	С	F	В	М	single code	double code
E01-6 ; E01-1 ; E01-3 / E01-4 ; E01-5	30	50	25	9	25	9.5	18	12	22	69/114	415.0772	415.0773
F01-1 / F01-2 horizontal	30	50	25	9	30	9.5	25.3	12	22	84/114	215.0044	215.0043
F01-2 vertical	30	50	25	9	25	9.5	18	12	22	84	415.0772	415.0773
MA1-3/MA1-5	25	50	25	6.7	27	6.8	20.6	10	18	120	415.0769	415.0764
STATYCA	30	90	50	11	40	11	28.3	14	25	198	415.0767	415.0762
VALYDA horizontal	30	90	50	11	40	11	28.3	14	25	228	415.0767	415.0762
VALYDA vertical	30	90	50	11	50	11	43.1	14	25	148	215.0042	215.0041
LOGYCA	30	90	50	11	40	11	28.3	14	25	248	415.0767	415.0762
PRATYCA horizontal	30	90	50	11	20	11	11.3	14	25	308	415.0768	415.0763
PRATYCA vertical	30	90	50	11	25	11	13.5	14	25	198	-	915.1174
SOLYDA horizontal	30	90	50	11	20	11	11.3	14	25	308	415.0768	415.0763
SOLYDA vertical	30	90	50	11	25	11	13.5	14	25	198	-	915.1174

L-shaped brackets

Joint for small profiles

Mainly used to improve structural rigidity by means of diagonal struts. Can also be used as a hinge to fix command or control devices (consoles, display units, etc.) to existing structures.



Profile	В	G		Code
			Screw lock	Handle lock
40x40	40	30.0	C90-00	C90-00-M
45x45	45	32.5	E90-00	E90-00-M
50x50	50	35.0	A90-00	A90-00-M

Threaded hole bracket

Threaded hole bracket for mounting additional equipment. Material: 6060 clear anodized aluminium alloy.

Series A30-7/30-5

3

4

5

6

B30-53

B30-54

B30-55

B30-56

Μ

-6				S.	¥ "	¥[Ø	
С	D	Е	S	Tx t	Μ	Code	Ø	Code
20	25	25	5	15 x 6.5	M6	A30-86	6	A30-76
20	19	15	5	20 x 6.5	M4	A30-64	4	A30-54
20	19	15	5	20 x 6.5	M5	A30-65	5	A30-55
20	19	15	5	20 x 6.5	M6	A30-66	6	A30-56

M3

M4

M5

M6

B30-63

B30-64

B30-65

B30-66

13.5 x 5.5

13.5 x 5.5

13.5 × 5.5

13.5 x 5.5

C

Series A30-8/30-6

Α В

35

35 25

35 25

25 25

25 25

25 25

25 25

45 45

25

15

15

15

15

14

14

14

14

15

15

15

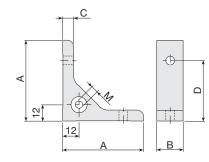
15

4

4

4

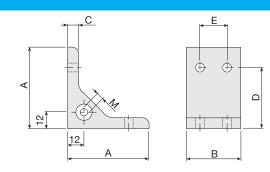
4


Series A30-7/30-5

Bracket for mounting additional equipment

L-shaped bracket for mounting additional equipment and improving the rigidity of frames made with profiles.

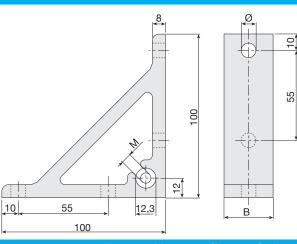
Material: 6060 clear anodized aluminium alloy.



Α	В	С	D	E	Ø	Μ	Code
60	20	8	45	-	6,5	-	B30-10
60	20	8	45	-	6.5	M6	B30-20
60	30	8	45	-	9	-	A30-10
60	30	8	45	-	9	M6	A30-20
38	30	8	25	-	9	-	A30-00
31	20	6	20	-	6.5	-	C30-00

Bracket for mounting additional profiles

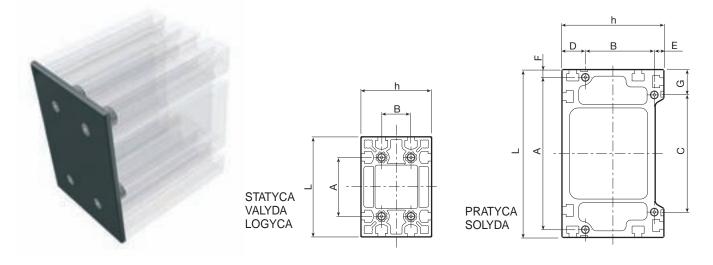
Material: 6060 clear anodized aluminium alloy.



Code	Μ	Ø	E	D	С	В	Α
A30-02	-	9	50	25	8	80	38
C30-02	-	6.5	40	20	6	60	31

Bracket for mounting additional profiles

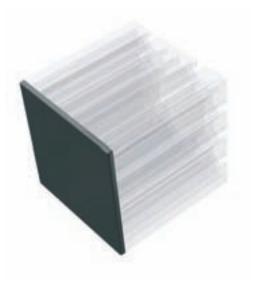
Material: 6060 clear anodized aluminium alloy.

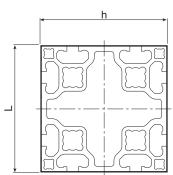


	В	Μ	Ø	Code
Without bushing	30	-	9	A30-30
Without bushing	20	-	6.5	B30-30
With bushing	30	M6	9	A30-40
With bushing	20	M6	6.5	B30-40

End caps for profiles

The end caps for STATYCA, VALYDA, and LOGYCA (supplied with 4 bushings 207.1892 thr. M20/6) are fixed to the profiles using the 4 holes provided in the centre that must be M20 threaded. PRATYCA and SOLYDA profiles must instead be M6 drilled and threaded as in the areas indicted in the drawing (in this case the end caps are supplied without any bushings). Please specify whether profiles will require end caps.


Material: black polyethylene, 6 mm thick. End caps in 6 mm-thick aluminium alloy are available upon request.



Bearing profile	L	h	Α	В	С	D	Code
202.1753 - STATYCA	170	120	100	50	-	-	212.1774
202.1146 - VALYDA	200	120	100	50	-	-	212.1704
202.2184 - LOGYCA	220	120	150	50	-	-	212.2279
202.1147 - PRATYCA	280	170	254	115	195.5	39	212.1705
202.0342 - SOLYDA	360	200	328	141	265	40	212.1706

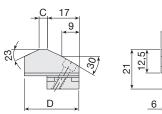
The end caps for small and medium profiles have no screws or bushes and are fitted simply by exerting moderate pressure on the end of the profile.

Material: black polyethylene, approx. 5 mm thick.



Profile	L	h	Code
MB 1-1	30	30	B40-30
E01-2	60	45	E40-20
E01-3	90	45	E40-30
E01-4	90	90	E40-40
E01-5	180	90	E40-60
E01-11/E01-6/E01-1	45	45	E40-10
E01-7	45	20	-
F01-1	60	60	F40-10
F01-2	90	60	F40-20
MA1-3	150	50	A40-30
MA1-5	100	100	A40-50
E01-13	90	135	E40-10/E40-30

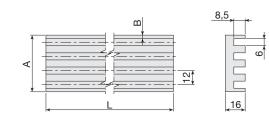
Cams in accordance with DIN 69639 except when marked "#". Material: steel with hardened and ground surface.



Α	В	Code
25	59	211.2132
40	74	211.2133
63	97	211.2134
80 #	114	211.2135
100	134	211.2136

Short cams (type A)

Cams in accordance with DIN 69639 Material: steel with hardened and ground surface.

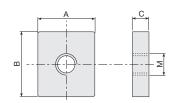


С	D	Code
0	25	211.2128
4	29	211.2129
10	35	211.2130
16	41	211.2131

Cam-holder guide rails

Cams in accordance with DIN 69638 Material: 6060 clear anodized aluminium alloy.

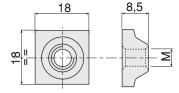
n°	В	Α	L	Code
3	3	36	3,000	202.2138
4	5.5	53	3,000	202.2139
6	5.5	77	3,000	202.2140
8	5.5	101	3,000	202.2141

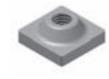

Threaded inserts for small and medium profiles

Inserts for base profiles 30/45/50/60

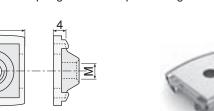
Material: galvanised steel.

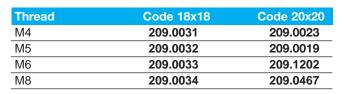
Important: inserts must be inserted into the T-slots before assembling.


Thread	A-B-C Code	Thread	A-B-C Code
M3	B32-30	M4	A32-40
M4	B32-40	M5	A32-50
M5	B32-50	M6	A32-60
M6	B32-60	M8	A32-80
Spring	211.1077	Spring	211.1061


Square nuts

Also suitable for profiles **STATYCA**, **VALYDA**, **LOGYCA**, **PRATYCA** and **SOLYDA**. Material: galvanised steel.

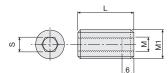

Important: inserts must be inserted into the longitudinal slots before assembling.



Plastic compound spring for vertical positioning of insert.

Spring	Code
Suitable for all inserts 18x18	101.0732

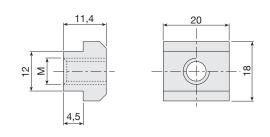
Threaded bushings


20

20

Material: chrome-plated steel.

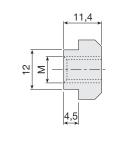
M14 or M16 threading is necessary at the end of the profiles.


				< ~>	
Profile	M1	М	S	L	Code
Base 30	14	10	10	25	B33-21
Base 30	14	8	8	25	B33-28
Base 30	14	6	6	25	B33-26
Base 45/50/60	16	10	10	25	A33-20
Base 45/50/60	16	8	8	25	A33-28
Base 45/50/60	16	6	6	25	A33-26

Frontally insertable alignment plates

Material: galvanised steel.

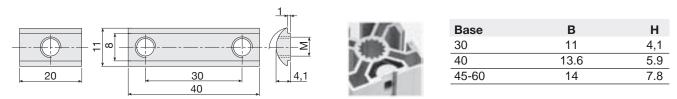
Important: inserts must be inserted into the T-slots before assembling.



Thread	Code
_M5	215.1768
_M6	215.1769
M8	215.1770
M10	215.2124

Frontally insertable alignment plates

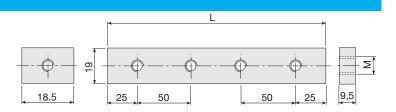
Material: galvanised steel.



Thread	Code
M5	215.1771
M6	215.1772
M8	215.1773
M10	215.2125

Inserts for base profiles 30/40/45/50/60 with spring, frontally insertable

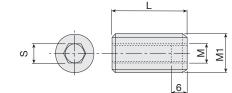
Material: galvanised steel. With retention spring.



				Base 30	Base 40	45-50-60
	Thread	N. holes	L	Code	Code	Code
and a second	M5	1	20	B32-55		A32-55
	M6	1	22	B32-65		A32-65
	M8	1	22	B32-85		A32-85
5	M6	2	40	B32-67		A32-67
	M5	1	20		C32-55	
	M6	1	20		C32-65	
	M8	1	20		C32-85	
	M6	2	40		C32-67	

Threaded inserts

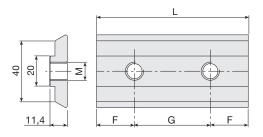
Also suitable for base-50 profiles, except A32-91 insert. Material: galvanised steel.

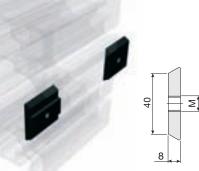


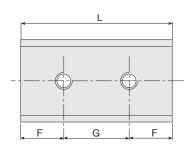
Thread	N. holes	L	Code
M10	1	40	215.0477
M12	1	40	209.1281
M10	1	20	209.1277
M10	2	80	209.1776
M10	3	150	209.1777
M10	4	200	209.1778
M10	5	250	209.1779
M10	6	300	209.1780
M10	7	350	209.1781

Threaded bushings

Material: galvanised steel. M20 threading at the end of the profile is necessary.

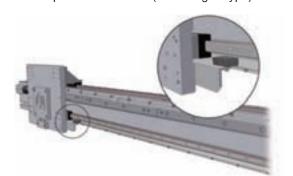


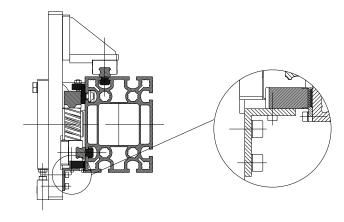

M1	М	S	L	Code
20	6	6	25	207.1892
20	8	8	25	207.1893
20	10	10	25	207.1894
20	12	12	25	207.2288


Dovetail inserts for VALYDA profile

Material: burnished C40.

Important: inserts must be inserted into the longitudinal slots before assembling. Special sizes are available upon request.



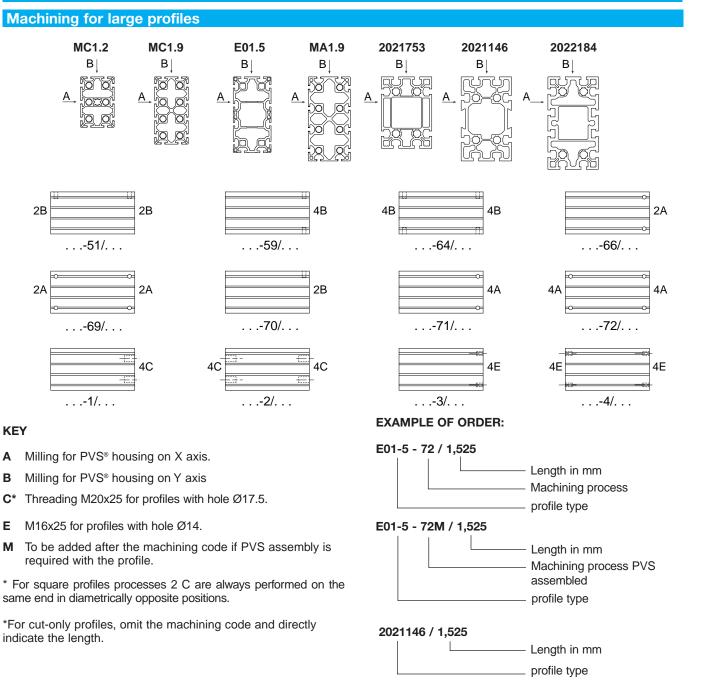

F	G	L.	N° holes	M 8	M10	F	G	L	N° holes	
25	-	50	1	214.0388	214.0394	25	-	50	1	
25	50	100	2	214.0389	214.0395	25	50	100	2	
25	50	200	4	214.0391	214.0398	25	50	200	4	
25	50	300	6	214.0393	214.0400	25	50	300	6	

Reader system with magnetic scale and sensor

The magnetic scale is applied to the body of the module using a supporting and protective profile.

Precision from \pm 0.015 to \pm 0,05 mm Max. speed = 4 - 10 m/s (according to type)

Machining code table

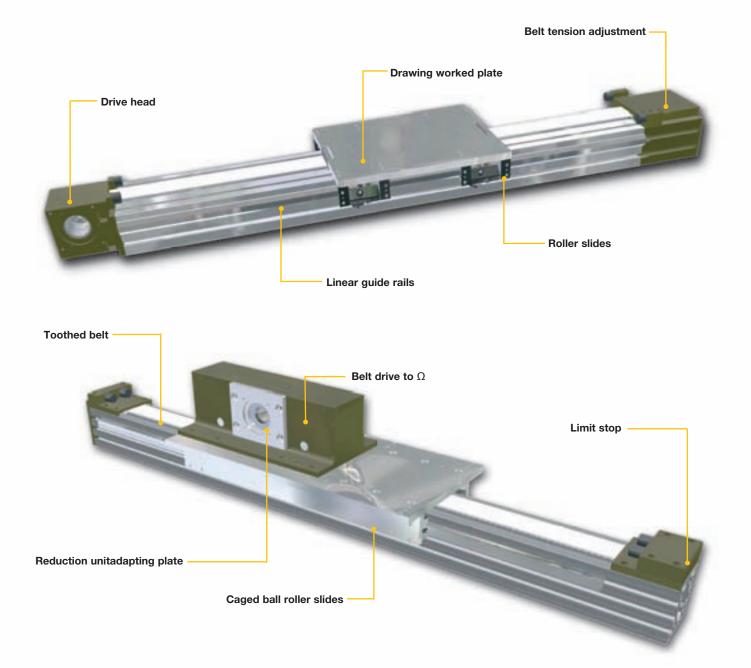

Α

В

C*

Ε

Μ


Index

mucz					
Code page	Code page	Code page	Code page	Code page	Code page
1010732 80	2040030 66	2110018 74	2370004 58	4360974 62	E01-6 (45x45) 12
1110033 61	2040031 66	2110023 74	2370005 58	4360984 62	E01-7 (20x40) 12
1110034 61	2040033 65	2111061 80	2370006 58	4360986 62	E01-8 (20x30) 12
1160012 61	2040034 66	2111077 80	2370013 58	4360987 62	E20-10 73
1160021 61	2040035 66	2111845 75	2370014 58	7400568 14	E20-20 73
1160022 61 1160023 61	2040050 64 2040052 64	2111849 74 2111857 75	2370015 58 2370016 58	9151174 75 A20-10 73	E20-60 74 E20-90 74
1160024 61	2040052 04	2112128 79	2370016 58	A20-10 73 A20-20 73	E40-10 78
1160025 61	2040055 64	2112129 79	2370018 58	A20-60 74	E40-20 78
1360003 61	2040474 65	2112130 79	2370019 58	A20-90 74	E40-30 78
2010005 60	2040475 65	2112131 79	2370021 58	A30-00 77	E40-40 78
2010007 60 2010009 60	2041314 71 2041315 71	2112132 79 2112133 79	2370022 58	A30-02 77	E90-00 76 E90-00-M 76
2010009 60	2041315 71	2112133 79	2370023 58 2370024 58	A30-10 77 A30-20 77	F01-1 13
2010013 60	2041319 71	2112135 79	2370025 58	A30-30 77	F01-2 13
2010014 60	2041344 71	2112136 79	2370026 58	A30-40 77	F20-10 73
2010015 60	2041345 71	2112349 59	2370027 58	A30-54 76	F20-20 73
2020342 17 SOLYDA	2041348 71 2041349 71	2112351 59 2112363 59	2370028 58 2370029 58	A30-55 76 A30-56 76	F20-60 74 F20-90 74
2021146 16	2041549 71	2112366 59	2370029 58	A30-56 76 A30-64 76	F40-10 78
VALYDA	2041519 66	2112367 59	2370031 58	A30-65 76	F40-20 78
2021147 17	2041520 67	2112429 59	2370032 58	A30-66 76	MA1-5 14
PRATYCA	2041521 67	2121704 78	2370033 58	A30-76 76	MB1-1 12
2021753 15 STATYCA	2041522 67 2041523 67	2121705 78 2121706 78	2370034 58 2370035 58	A30-86 76 A32-40 80	PAR 1 18 PAR 1/05 34
2022184 16	2041579 65	2121700 78	2370035 58	A32-40 80 A32-50 80	PAR 10 32
LOGYCA	2042071 64	2122279 78	2370037 58	A32-55 81	PAR 10/6 52
2022138 79	2042072 64	2140388 82	2370038 58	A32-60 80	PAR 10/8 54
2022139 79	2042086 68	2140389 82	2370039 58	A32-65 81	PAR 2 20
2022140 79 2022141 79	2042092 71 2042093 71	2140391 82 2140393 82	2370040 58 2370041 58	A32-67 81	PAR 2/1 36 PAR 3 22
2022141 79 2030008.L 56	2042093 71	2140393 82	2370041 58	A32-80 80 A32-85 81	PAR 3/1 38
2030008.LF 56	2042095 71	2140395 82	2370043 58	A32-91 82	PAR 4 24
2030008.LFX 56	2042096 71	2140398 82	2370044 58	A33-20 80	PAR 4/1 40
2030008.LFXX 57	2042097 71	2140400 82	2370045 58	A33-26 80	PAR 5 26
2030008.Lx 56 2030008.Lxx 57	2042098 71 2042099 71	2140430 82 2140431 82	2370046 58 2370047 58	A33-28 80 A40-30 78	PAR 5/2 42 PAR 6 28
2030008.Lxx 57 2030027.L 56	2042099 71	2140431 82	2370047 58	A40-30 78 A40-50 78	PAR 6/2 44
2030027.LF 56	2042101 71	2140435 82	2370049 58	A90-00 76	PAR 6/4 46
2030027.lf 56	2042102 71	2150025 60	2370050 58	A90-00-M 76	PAR 8 30
2030027.LFX 56	2042103 71	2150026 60	2370051 58	B20-10 73	PAR 8/3 48
2030027.lfx 56 2030027.lfxx 57	2042104 71 2042105 71	2150027 60 2150028 60	2370052 58 2371141 58	B20-20 73 B20-60 74	PAR 8/6 50 PAS 1 19
2030027.LFXX 57	2042105 71	2150028 60	2371141 58	B20-66 74	PAS 1/05 35
2030027.Lx 56	2042107 71	2150042 75	2371387 58	B20-90 74	PASM 10 33
2030027.LXX 57	2042108 71	2150043 75	2371388 58	B210-10 73	PASM 10/6 53
2030028.∟ 56	2042109 71	2150044 75	2371542 58	B210-20 73	PASM 10/8 55
2030028.lf 56 2030028.lfx 56	2042110 71 2042111 71	2150477 82 2151768 81	2371543 58 2372013 58	B30-10 77 B30-20 77	PASM 2 21 PASM 2/1 37
2030028.LFX 50	2042283 68	2151769 81	2372013 58	B30-20 77 B30-30 77	PASM 3 23
2030028.Lx 56	2042302 65	2151770 81	2372157 58	B30-40 77	PASM 3/1 39
2030028.LXX 57	2050011 63	2151771 81	2372158 58	B30-53 76	PASM 4 25
2030030.∟ 56	2050012 63	2151772 81	2372159 58	B30-54 76	PASM 4/1 41
2030030.lf 56 2030030.lfx 56	2050013 63 2050014 63	2151773 81 2152078 60	2372301 58 2372398 58	B30-55 76 B30-56 76	PASM 5 27 PASM 5/2 43
2030030.LFX 50	2050053 64	2152124 81	2372421 58	B30-63 76	PASM 6 29
2030030.Lx 56	2050163 68	2152125 81	4060056 68	B30-64 76	PASM 6/2 45
2030030.LXX 57	2050165 68	2152137 60	4150762 75	B30-65 76	PASM 6/4 47
2030122.∟ 56 2030122.∟ 56	2050463 68	2152243 60	4150763 75	B30-66 76	PASM 8 31
2030122.lf 56 2030122.lfx 56	2050464 68 2071892 82	2152281 60 2152368 60	4150764 75 4150767 75	B32-30 80 B32-40 80	PASM 8/3 49 PASM 8/6 51
2030122.LFX 57	2071893 82	2152369 60	4150768 75	B32-50 80	
2030122.LX 56	2071894 82	2360010 64	4150769 75	B32-55 80	
2030122.LXX 57	2072288 82	2360011 64	4150772 75	B32-60 80	
2030423.∟ 56 2030423.∟ 56	2090019 80	2360014 64	4150773 75	B32-65 81	
2030423.LFX 56	2090023 80 2090298 57	2360015 64 2360018 72	4360144 62 4360145 62	B32-67 81 B32-85 81	
2030423.LFXX 57	2090467 80	2360019 72	4360146 62	B33-21 80	
2030423.LX 56	2090479 57	2360021 72	4360948 62	B33-26 80	
2030423.LXX 57	2090480 57	2360022 72	4360949 62	B33-28 80	
2040004 64	2091202 80	2361689 69	4360951 62	B40-30 78	
2040005 66 2040013 65	2091277 82 2091281 82	2361691 70 2362076 70	4360952 62 4360955 62	C30-00 77 C30-02 77	LOGYCA 2022184 16
2040015 65	2091201 82	2362079 70	4360957 62	C30-02 77 C90-00 76	PRATYCA
2040016 65	2091777 82	2362082 70	4360958 62	C90-00-M 76	2021147 17
2040017 66	2091778 82	2362083 70	4360960 62	E01-1(45x45) 12	SOLYDA
2040018 66 2040019 64	2091779 82 2091780 82	2362088 70	4360963 62	E01-11(45x45) 12 E01-2 (45x60) 13	2020342 15
2040019 64 2040026 66	2091780 82 2091781 82	2362089 70 2362090 70	4360965 62 4360966 62	E01-2 (45x60) 13 E01-3 (45x90) 13	statyca 2021753 15
2040027 66	2091855 57	2362091 70	4360968 62	E01-4 (90x90) 14	VALYDA
2040028 66	2110012 74	2370002 58	4360971 62	E01-5 (90x180) 15	2021146 16

Modline linear modules are ready-to-use linear guide systems with high accuracy, speeds and load performances.

Our experience in the fields of the automotive plants, painting, plate working, manufacturing machines and palletization systems has allowed us to widen our product range with the most advanced technical solutions.

Our products stand out for their:

- high quality and competitive performances (profiles up to12m)
- without play transmissions achieved by high torque couplings
- beams with transversal stiffening ribs and preset for threads on profile ends
- **accurate scaling** and consequent reduced maintenance
- **fast** and accurate **belt** or without play screw drives
- the most complete range of accessories

The Modline linear module strong points are:

- Acomplete series of linear units to build up 3 or more axis cartesian robots
- Linear modules with linear guides suitable for parallel assembling
- Choice between strong steel linear guides with rollers or accurate caged ball roller slides and guides
- Choice between mobile carriage or fixed carriage and mobile profile
- Wide and complete solutions for control systems; programmable cards on request
- On request: assembling of E-chain cable carriers, reduction units, stiffening angle bars
- Drawing worked carriage plates
- Accessories and compatibility for pinion/rack drive unit integrated assembling

Contents

INTRODUCTION

Construction Features	2
Assembly and lubrication specifications	3
Introduction – operation and control unit - tightening specifications	4
Standard assembly solutions	5
Sizing template	6
Sizing request form	7
Preliminary selection table (1-2-3 axes)	8
Special applications with standard modules	9
Assembly positions and order code setting	10
Order Code	11
Profile specifications	12

M MODULES WITH BELT DRIVE

MCR 65 with rollers	16
MCS 65 - MCH 65 with caged ball roller slides	17
MCR 80 with rollers	18
MCS 80 - MCH 80 with caged ball roller slides	19
MCR 105 with rollers	20
MCS 105 - MCH 105 with caged ball roller slides	21
MCLL 105 with twin guide and caged ball roller slides	22

MODULES WITH SCREW DRIVE

MVR 80 - MTR 80 trapezoidal screw and rollers				
MVR 105 - MTR 105 with ball / trapezoidal screw and rollers	24			
MVS 105 - MVH 105 with ball / trapezoidal screw and rollers	25			
MVHH 105 with ball screw and caged ball roller slides	26			
TVH 180 with ball screw and caged ball roller slides	27			
TVS 170 with ball screw and caged ball roller slides	28			
TVS 220 with ball screw and caged ball roller slides	29			

T MODULES WITH BELT DRIVE

-	TCG 100 with shaped rollers	30
	TCH 100 - TCS 100 with caged ball roller slides	31
	TCR 180 - TCG 180 with rollers	32
	TCH 180 - TCS 180 with caged ball roller slides	33
	TCRQ 170 with rollers	34
	TCH 170 - TCS 170 with caged ball roller slides	35
	TCRQ 200 with rollers	36
_	TCH 200 - TCS 200 with caged ball roller slides	37
7	TCRQ 220 with rollers	38
1	TCH 220 - TCS 220 with caged ball roller slides	39
	TCRQ 280 - TCRP 280 with rollers	40
	TCH 280 - TCS 280 with caged ball roller slides	41
	TCRP 360 with rollers	42
	TCH 360 - TCS 360 with caged ball roller slides	43
	TECRQ - TECH 170 (EASY) with roller or recirculating ball slides	44
	TECRR 180 - TECH 180 (EASY) with trapezoidal guides and roller slides	45

Z MODULES WITH OMEGA BELT DRIVE

ZCG 60 with shaped rollers	40
ZCL 60 with caged ball roller slides	47
ZCG 90 with shaped rollers	48
ZCRR 90 with rollers	49
ZCL 90 with caged ball roller slides	50

This document replaces all previous editions. Due to the constant progress of our research we reserve the right to modify drawings or features without notice. No part of this catalogue may be reproduced without written permission of the copyright owner. All rights reserved. This catalogue has been accurately checked before publishing. However, we disclaim all responsibility in case of errors and omissions.

Edition 03-2015

ZCY 180 with guide profile and shaped rollers	51
ZCRQ 100 with rollers	52
ZCL 100 with caged ball roller slides	53
ZCRQ 170 - ZCERQ 170 with rollers	54
ZCL 170 - ZCEL 170 with caged ball roller slides	55
ZCRQ 220 - ZCERQ 220 with rollers	56
ZCL 220 - ZCEL 220 with caged ball roller slides	57
ZMCPLL 105 - ZMCLL 105 with pneumatic counter balance	58
ZMCH 105 with pneumatic counter balance	59

K MODULES WITH BELT DRIVE

KCH 100 - 150 - 200 with recirculating ball slides	60
--	----

ACCESSORIES AND APPLICATIONS

Drive Pulley Bores for Shrink Discs	61
Adapter Flanges	62
Connecting shafts for parallel modules	63
Spare rollers - mounting brackets	64
Accessories and screws	65
Front insertable nuts and plates	66
Threaded nuts and plates	67
Alignment nuts	68
Micro-switch supports - cams and cam-holders for micro-switches	69
Special Options	70
Special applications	71
Anti-drop system - safety lock-pin device	72
Index	74

Construction Features

Beams

Obtained from Rollon extruded and anodised aluminium alloy profiles. Material features: Al Mg Si 0.5 hardened and tempered, F25 quality, Rm 245 N/mm2, tolerance as per EN 755-9 and EN 12020-2. Profiles have been specially designed to achieve high stiffness and long lengths (up to 12 m), in order to obtain solid, lightweight structures, suitable for the construction of linear transfer machines.

Plates

Obtained from aluminium alloy rolled sections, tensile strength Rm 290 N/mm2, HB 77, high performance. On request we perform machining work on all standard plates (D code) and according to detailed customer drawings.

V-shaped guide rails

In hardened and ground high carbon steel (min. hardness 58 HRC). (Anti-oxidation coating upon request).

Guide rails for caged ball roller slides

S version: high performance, with cage, primary producers. L version: high dynamics, medium loads. H version: standard performance and limited dynamics.

Roller slides

Body in aluminium alloy G AL SI 5 hardened and tempered according to UNI 3600 or Alloy 6082, rollers with double rows of angular contact ball bearings, backlash-free, long life lubrication: Ø 30, Ø 40, Ø 52, Ø 62 mm rollers. Adjustable tolerance between rollers and guide rails. Complete with new felt scrapers.

Toothed drive and driven pulleys

In C40 steel with coupling toothing on the polyurethane belt, backlash-free, with anti-oxidation treatment. Equipped with large, watertight bearings, capable of withstanding high work performance, due to the use of the multicarriage with durable, alternating backlash-free movements.

Toothed belts

In durable polyurethane, fitted with high-resistance reinforced with high tensile strength steel cords, which prevent the belt from lengthening over time. They are grease, oil and gasoline-proof and can work at temperatures from - 30° up to +80°. The belt is fastened to the plate by means of a hooked support. The belt can be serviced without disassembling the equipment on the plate (standard versions).

Shrink-discs, shafts and pulleys

All models shown in the catalogue work with the standard conical shrink-disc drive system to lock the driving shaft and the driven shaft if present. Gearbox or shaft adapting plates are supplied upon request, as per drawing.

Bumper Stops

Important: the rubber stop pads provided with standard linear models are suitable and regarded as static limit switches. For special needs, such as safety stops if the drive breaks, please specify loads, dynamics, details and discuss the use of specific parts, accessories and devices (reinforced plates and attachments - shock absorbers, safety and/or anti-drop devices, etc.) with our technical dept.

Anodizing

We supply all linear modules equipped with: natural, anodised aluminium alloy profiles (min. 11µ), driving heads, driven heads, carriages (MC series), counter plates, in dark bronze anodizing (min. 11µ).

Anti-oxidation parts and coatings

Modules are also available with anti-oxidation coating. Materials and coatings are selected according to the environment of use (food industry, marine environment, etc.).

Assembly specifications

Main features of the roller translation system

The translation system consists of a plate to which two roller slides with concentric pins and two with eccentric pins are fixed. The eccentric pins are suitable for adjusting backlash between the roller slide and the sliding track. Check that the angular position of the rollers is such that they can support the max. working load (page 10).

Guide rails and roller slides are particularly suitable for use in dusty and aggressive environments.

Important: during adjustment, overloading is easily achieved: this may result in premature wear.

NB: always keep friction low. If friction is high, loosen and repeat the adjustment.

Main features of the caged ball roller slides translation system

The sliding system guarantees high performance in terms of precision and load resistance, reduced maintenance and stiffness thanks to the connecting slots of the profile.

All guide rails are directly fixed onto the profile surface, appropriately machined to guarantee geometric and dimensional tolerances, paying attention to the parallelism between them. In large modules, any profile flatness or parallelism errors are corrected by means of the appropriate machining procedures. Please inform our technical dept. of any specific application requirements.

When mounting the linear axes in parallel, it is necessary to not only verify the parallelism between the linear units themselves, but also the coplanarity of the surfaces of the heads so that the maximum error does not exceed 0.3 mm per meter between the parallel modules and within \pm 0.03 mm compared to the parallelism.

Lubrication

Roller slides and caged ball roller slides

Roller slides are provided with a permanent lubrication system which, if properly used, eliminates the need for any further maintenance, also considering the average life of any handling device. As for screw modules, the caged ball or V screw requires periodical lubrication.

For applications on plants with a high number of daily cycles, or with a significant build-up of impurities, please check the need for lubrication, seals and additional tanks with our technical dept. Do not use solvents to clean rollers or roller slides, as you could unintentionally remove the grease lubricating coat applied to the rolling elements during assembly.

Use lithium soap based mineral grease according to DIN 51825 - K3N. Read the instruction manual

Complete central lubrication system. Grease cartridge upon request.

Guide rails

If properly assembled, guide rails do not require any lubrication, which would attract impurities and have negative consequences. Should there be any surface defects on the guide rails and/or on the rolling parts, such as pitting or erosion, this might be due to an excessive load. In this case, all worn parts must be replaced and the load geometry and alignment checked.

Introduction - operation and control unit

On request, we can supply systems complete with specific motor drives for industrial automation applications, suitable for specific handling tasks according to the customer's needs (moving loads, accelerations, speeds, cycle times, resolution, repeatability).

These can be equipped with gearboxes, servomotors, mechanical limit switches, proximity switches and various accessories, such as energy chains, interface plates, fixing supports.

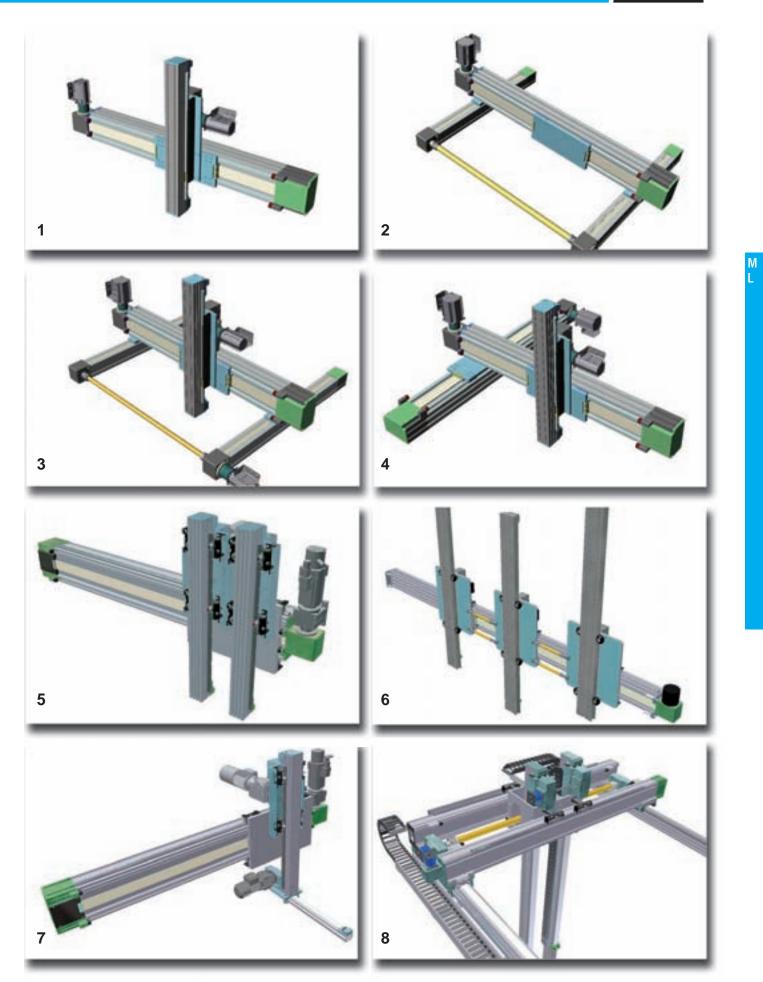
Our technical dept. is at your complete disposal for any scaling requirements and the choice of moving unit and electromechanical parts suitable to achieve the required performance levels. We can draw on our experience to help our customers in their choice of linear unit and the following parts:

gearboxes: worm screw, planetary, bevel;

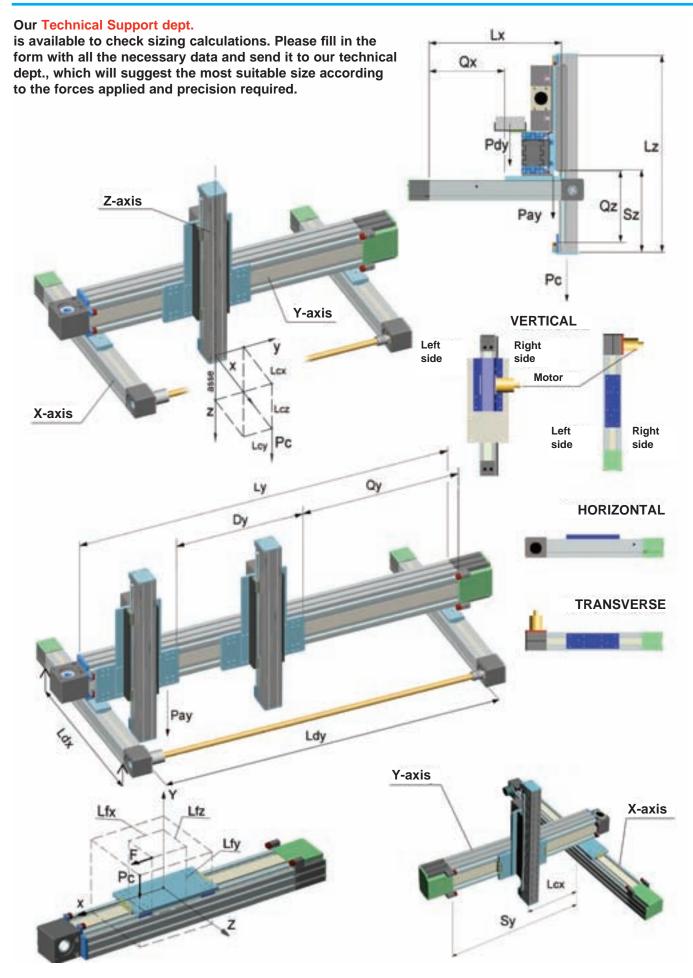
motors: stepper, brushless, DC, asynchronous.

For each of these we can propose drives manufactured by primary producers marketed in Italy and abroad suitable for the calculated power ratings.

Rollon is able to support the customer in choosing complete systems equipped with axis control, with or without interpolation, with or without PLC, suitable for operating handling cycles and machine management. The customer has only to provide for piping and wiring.


Application examples:

glue dispensing units paint or resin distribution units load/unload of manufacturing machines pick and place systems control and sensing instrument handling drilling PCB boards cartesian robots with 2, 3 or more axes


Tightening specifications

During set-up, make sure all parts are locked with the appropriate screws and with the right tightening torques.

Standard assembly solutions

Sizing template

Sizing request form

Modline

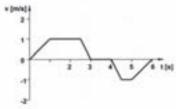
For a proper definition of the linear units, fill in the scaling request form and send it to the Technical Support Department.

Date:Request n	٥
· Filled in by	
Company	
Address	
PhoneFax	
E-mail	

Sizing template

MODLINE linear modules

ASSEMBLY SOLUTIONS (see page 5) no. Total length Total working load including EOAT (add Z axis for Y and X axes) Equipment weight on carriage (gearbox, cylinder, OPTIONAL) Weight distributed on the beam (energy chain) Profile supports Max. projection (any cantilever, the largest) Max. span Offset load's centre of gravity (X-axis) Offset load's centre of gravity (Y-axis) Offset load's centre of gravity (Z-axis) Any additional force Offset additional force (X-axis) Offset additional force (Y-axis) Offset additional force (Z-axis) Possible distance between the carriages Transmission performance Assembly: vertical= 90° - slope = 30°, 45°, 60° - horizontal Stroke Speed Acceleration Cycle time Positioning accuracy Repeatability Work environment (temperature and cleanliness) Daily working cycles Minimum service life requested

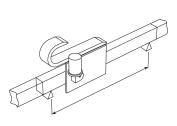

Working cycle

1[4]

v [m/s]

Example working cycle

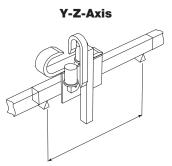
Notes:	


Preliminary selection table (1-2-3 axes)

These tables are useful for making a preliminary selection with load applied in a central position with respect to the plate or profile axis. Z axis length is < 1600 mm. Deflection is computed assuming continuous beams having the same span and concentrated static loads.

_		PA	2X	ЗХ	4X	5X	6X	8X	10X	LC
[kg.]					De	eflection				
	50		1.4							5000
city	100		1.8							5000
capa	200		2.7	1.8						5000
	300			2.3	2.7					5000
ad	400				3.3	2.4				5000
Ĩ	500					2.8	1.8			5000
X	600						2	2		6000
Max.	800							2.5	1.8	6000
	1000								2.1	7000

In the following table, select the appropriate X axes according to the load


X-Axis

NB: for vertical 8X and 10X portals, compensate the load

From the table below, select the most suitable combination of Y-Z axes depending on the load.

		PA	2/1	3/1	4/1	5/2	6/2	8/3	6/4	8/6	10/6	10/8	LC
[kg.]							D	eflect	ion				
	50		1.9										5000
acity	100		2.4	1.7	2	1.6							5000
cap	200					2.2	0.8	0.8					5000
	300						1.6	1.6	1.6				6000
oad	400								1.9	2	0.9		6000
	500									2.2	1		6000
Max.	600									2.5	1.2	1.2	6000
2	800											2.2	7000

From the table below, select the most suitable combination of X-Y-Z axes depending on the load.

	Y-Z-axis											
		PA	2/1	3/1	4/1	5/2	6/2	8/3	6/4	8/6	10/6	10/8
	PA	Load [kg.]	100	100	100	200	200	300	400	600	600	700
	2X											
<u>v</u> .	3X											
X-axis	4X											
\times	5X											
	6X											
	8X											
	10X											

NB : the choice of X axis is based upon the actual load, the supporting points, max. deflection and the total weight of the Y-Z axes

EXAMPLE: selection of 3-axis system with roller slides

(Please see page 7 and the system pages for the nomenclature)

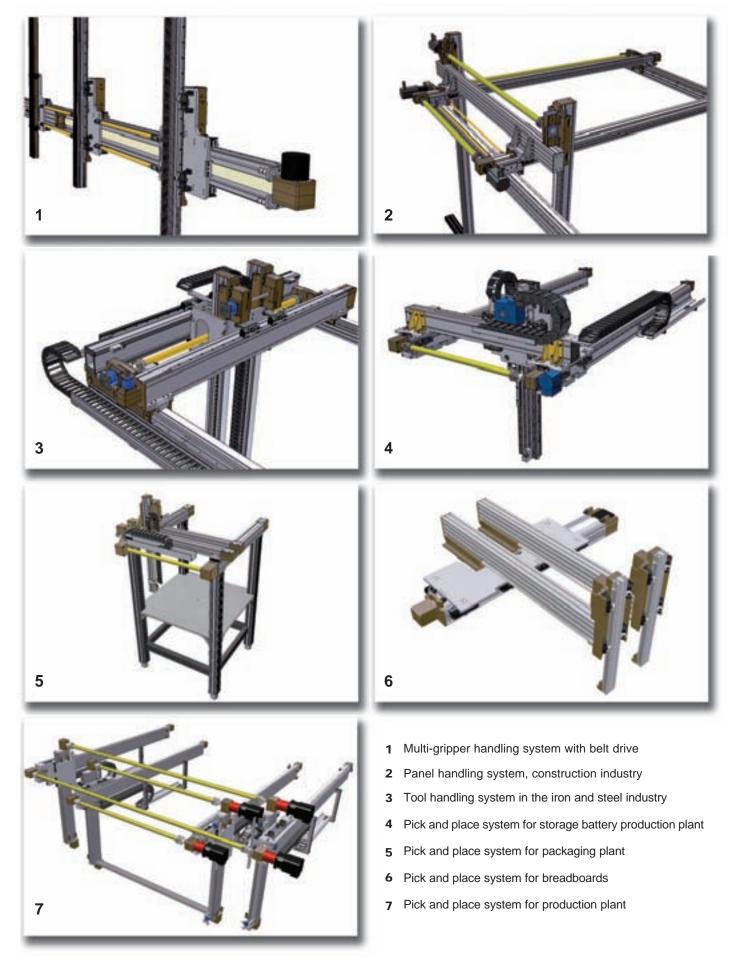
DATA: Total working load 300 kg, X axis stroke: 5,000 mm, Y axis stroke: 4,000 mm, Z axis stroke: 2,000 mm, support points: 2

By analysing the table of Y-Z axes based on the working load (Pc), profile length (Ly) and deflection, the selection falls on one PA 8/3 (load 300 kg.) portal

Check: $P_{eff} = P_{max}$ (Lz - 1,600)/1,000• $q_z = 300$ -(2,900-1,600)/1,000•35 = 254.5 kg. < di 300 kg. Therefore select the larger size PA 6/4 (max. load capacity 400 kg.)

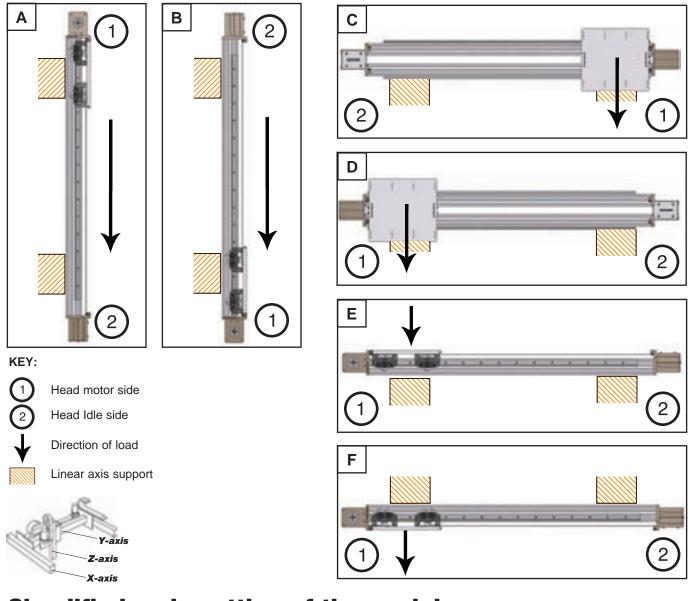
 $M_{tot} PA 6/4 (Y+Z) = M_{base} + (q_y \bullet stroke_y + q_z \bullet stroke_z)/1,000 + Pc = 244 + (66 \bullet 4,000 + 48 \bullet 2,000)/1,000 + 300 = 904 \text{ kg}.$

 $Ptx = M_{tot} PA 6/4 (Y+Z) \cdot 0.66 = 596.6 kg.$


 $Lx = stroke_x + 1,200 approx = 5,000+1,200 = 6,200 mm$

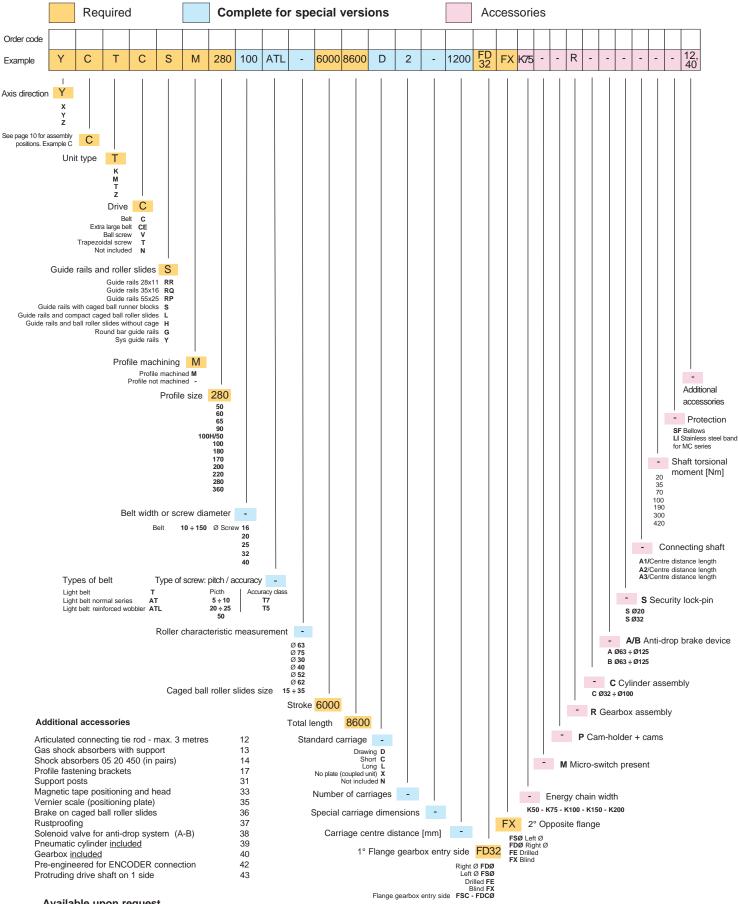
By analysing the table of X axes based on the load (Ptx) profile length (Lx) and deflection, it is possible to select two PA 6X linear axes Chosen composition: $n^{\circ}1 PA 6/4 + n^{\circ} 2 PA 6X$

Perform a final analysis by computing the deflection based on the actual size of the spans. Our technical dept. is at your complete disposal to help you examine the most suitable applications for your requirements.


Special applications with standard modules

M L

Assembly positions and load direction


For rollers profiles.

Simplified code setting of the module

EXAMPLE		т	С	S	Μ	280	mm/mm/	••••	
SERIES	K= light M= compact closed section T= heavy Z= vertical omega belt								
HANDLING	C= belt CE= large belt V= ball screw T= trapezoidal screw N= idle L= linear motor								
SLIDE	S= guide rails for caged balls ro H= guide rails for caged ball ro G= guide rails for cylindrical sh	H= guide rails for caged ball roller slides G= guide rails for cylindrical shaped rollers							
MACHINING PROFILE	M= profile with machined guide pl	ane and ra	ck plane						
PROFILE SIZE									
STROKE / Length	"mm" = X-axis / Y-axis / Z-axis								
ACCESSORY CODES	Various accessory codes								

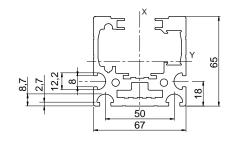
Order Code

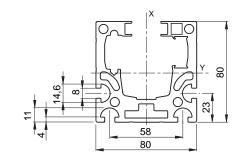
Available upon request

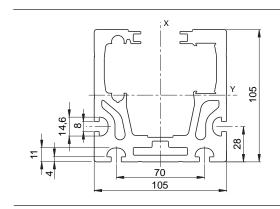
· Supply and assembly of cams and cam-holders for micro-switches, energy chains, etc.

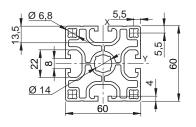
Assembly of optional accessories SUPPLIED BY THE CUSTOMER.

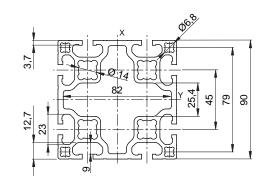
· Machining to specifications (drilling, milling) on the free surfaces of the plates or profile

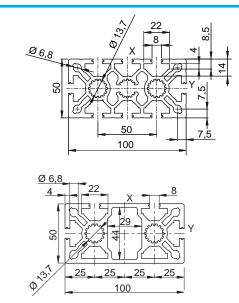

• Customised applications (optional: structural inspections for special loads, Cartesian robots with three or more axes, linear units with several plates, etc.)


• Our technical dept. is at your complete disposal to examine the most suitable applications for your requirements.

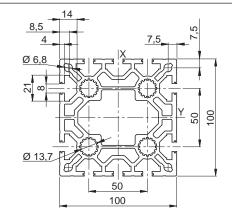

Modline


Μ

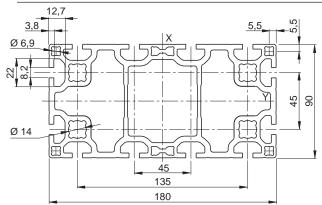

Profile specifications

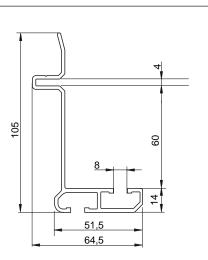

Profile	M 65x67	
Weight per metre	4.5	[kg/m]
Max. length	9	[m]
Moment of inertia ly	683,900	[mm ⁴]
Moment of inertia Ix	796,750	[mm ⁴]
Module	MCR/L/H 65	

Profile	M 80x80	
Weight per metre	6.3	[kg/m]
Max. length	6	[m]
Moment of inertia ly	1,430,000	[mm ⁴]
Moment of inertia Ix	1,780,000	[mm ⁴]
Module	MCR/S/H 80 - MVR/S/T 80	


Profile	M 105x105	
Weight per metre	11	[kg/m]
Max. length	10.45	[m]
Moment of inertia ly	4,466,000	[mm ⁴]
Moment of inertia Ix	5,660,000	[mm ⁴]
Module	MCR/S/H - MVR/S/T 105	

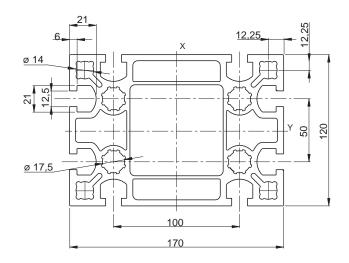
Profile (60x60)	F01-1	
Weight per metre	3.6	[kg/m]
Max. length	6	[m]
Moment of inertia ly	466,600	[mm ⁴]
Moment of inertia Ix	466,600	[mm ⁴]
Module	ZCG/L 60	

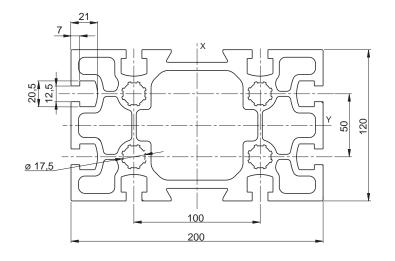

Profile (90x90)	E01-4	
Weight per metre	6	[kg/m]
Max. length	6	[m]
Moment of inertia ly	2,027,000	[mm ⁴]
Moment of inertia Ix	2,027,000	[mm ⁴]
Module	ZCG - ZCL - ZCRR 90	

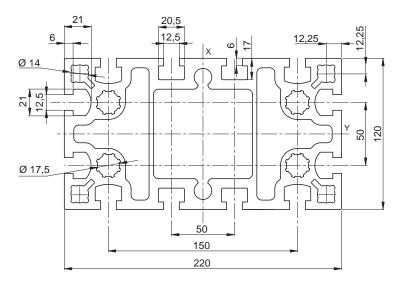


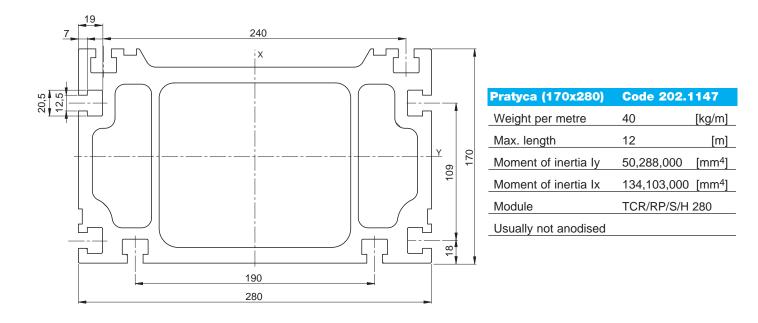

MA 1-2	MA 1-4	
5.3	5.2	[kg/m]
6	6	[m]
502,800	543,100	[mm ⁴]
1,986,600	2,036,700	[mm ⁴]
ZCR/L 10	OH TCG/TCS/	H 100
	5.3 6 502,800 1,986,600	5.3 5.2 6 6 502,800 543,100 1,986,600 2,036,700

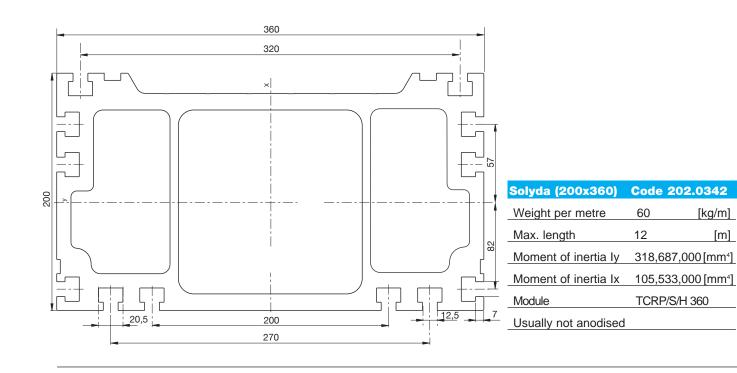
Profile (100x100)	MA 1-5	
Weight per metre	9.5	[kg/m]
Max. length	6	[m]
Moment of inertia ly	3,650,000	[mm ⁴]
Moment of inertia Ix	3,800,000	[mm ⁴]
Module	ZCR/L 100	

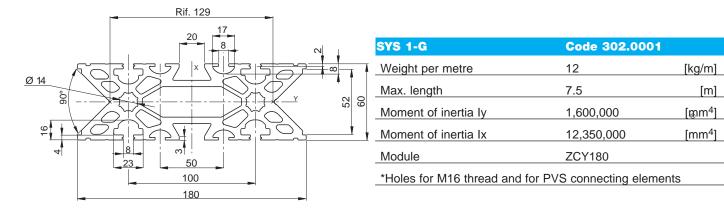





7400568 energy chain supp	ort profile		
Weight	1.5	kg/m	
Available length	6	m	

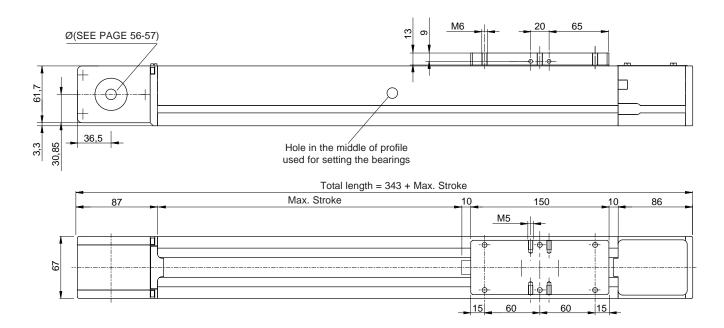

Statyca (120x170)	Code 202.1753	
Weight per metre	17	[kg/m]
Max. length	12	[m]
Moment of inertia ly	10,200,000	[mm ⁴]
Moment of inertia Ix	20,360,000	[mm ⁴]
Module	TCR/S/H 170 - ZCR/L	_ 170



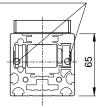

Valyda (120x200)	Code 202.1146	5
Weight per metre	21	[kg/m]
Max. length	12	[m]
Moment of inertia ly	12,900,000	[mm ⁴]
Moment of inertia Ix	32,900,000	[mm ⁴]
Module	TCR/S/H 200	
Anodised up to	9	[m]

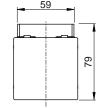
Logyca (120x220)	Code 202.218	34
Weight per metre	25	[kg/m]
Max. length	12	[m]
Moment of inertia ly	15,650,000	[mm ⁴]
Moment of inertia Ix	46,550,000	[mm ⁴]
Module	TCR/S/H 220-ZCI	R/L/ 220
Anodised up to	lungh. 9	[m]

[kg/m]


[m]

MCR 65


Registered model

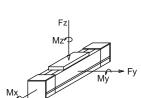

HARDENED GUIDE RAILS AND PROFILED ROLLERS

Option: lighter version with pulley seats integrated within the profile Accessories: see page 11

SCREWS FOR BELT TENSION

Performances	MCR 65	
Max. stroke	5,830	[mm]
Max. speed	4	[m/s]
Max. acceleration	20	[m/s ²]
Repeatability	± 0,1	[mm]
No load torque	-	[mm]

Suggest	ed workin	g load con	ditions			
Module	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
MCR 65	45	94	34	1,180	670	1,000


The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

Data		
Belt	32AT05	
Slide	Rollers: 4 Ø	ð 24 - 4 Ø 22 [mm]
Load bearing profile	65x67	(see page 12)
Pulley Ø	50.93	[mm]
Lead	160	[mm/rev]
		· · ·

Fz	<u>z</u>
Mz	
, A	My Fy
Mx	IVIY
Fx	

Fx= Max belt strength

Weights		
Inertia of the pulley	-	[kgm ²]
Belt weight	0.22	[kg/m]
Carriage weight	1	[kg]
Base module (stroke=0)	M _{base} =4.4	[kg]
1,000 mm profile	q=5.4	[kg]

ML-17

Accessories: see page 11

Option: lighter version with pulley seats integrated within the profile

Registered model

67

1

15

60

60

15

59

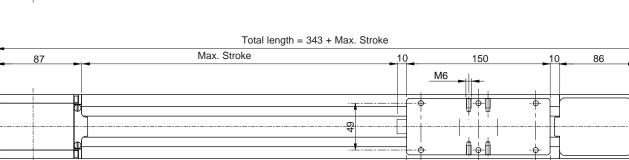
79

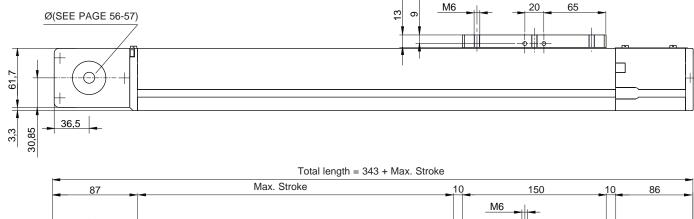
Performances	MCS 65	MCH 65	
Max. stroke	7,830	7,830	[mm]
Max. speed	5	3	[m/s]
Max. acceleration	50	30	[m/s ²]
Repeatability	± 0.1	± 0.1	[mm]
No load torque	-	-	[mm]

Suggested working load conditions							
Module	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]	F _{zB} [N]
MCH 65	19	120	120	1,180	1,960	1,960	1,960
MCS 65	16	140	103	1,180	2,094	3,740	2,320

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

Data		
Belt	32AT05	
Slide	2 caged bal	ls roller slides15[mm]
Load bearing profile	65x67	(see page 12)
Pulley Ø	50.93	[mm]
Lead	160	[mm/rev]


Weights		
Inertia of the pulley	-	[kgm ²]
Belt weight	0.22	[kg/m]
Carriage weight	1,1	[kg]
Base module (stroke=0)	M _{base} =4.2	[kg]
1,000 mm profile	q=6.2	[kg]


M F>

Fx= Max belt strength

85

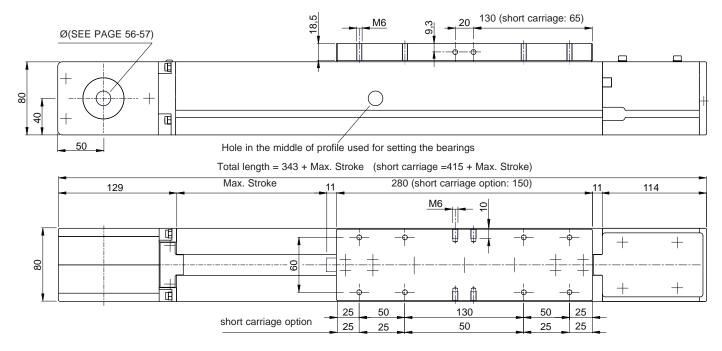
L

MCR 80

Registered model

Performances

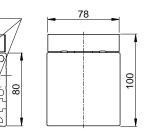
Max. acceleration


Max. stroke

Max. speed

Repeatability

No load torque


Option: version with additional belt protection (see page 66) Option: short carriage version - code C Accessories: see page 11

MCR 80 5,700 [mm] 5 [m/s] 20 [m/s²] ± 0.1 [mm]

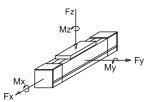
[Nm]

0.7

Suggest	ed working	g load con	ditions			
Module	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
MCR 80	51	200	80	2,150	850	1,400

Suggest	ed working	g load con	ditions sho	ort carriag	e option	
Module	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
MCR 80	.C 51	100	40	2,150	850	1,400

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery.

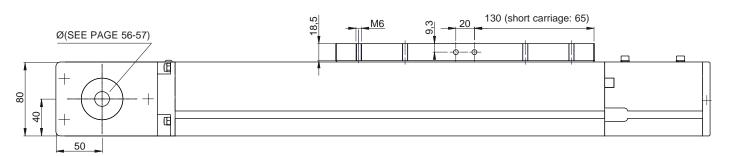

In case of peak forces acting together please ask the technical dept

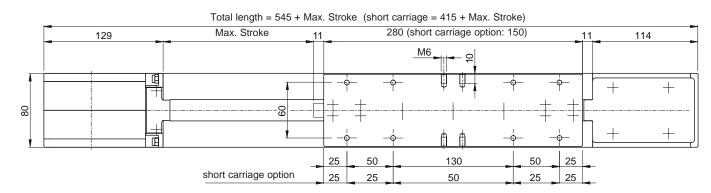
Data		
Belt	32AT10	
Slide	Rollers: 4 9	Ø 24 - 4 Ø 22 [mm]
Load bearing profile	80x80	(see page 12)
Pulley Ø	70.03	[mm]
Lead	220	[mm/rev]

Weights		
Inertia of the pulley	0.0010	[kgm ²]
Belt weight	0.38	[kg/m]
Carriage weight	2	[kg]
Base module (stroke=0)	M _{base} =8	[kg]
1,000 mm profile	q=7	[kg]

To calculate the module weight use the following formula: M=M_{base}+q•stroke_{max}/1,000 Stroke_{max} [mm]

SCREWS FOR BELT TENSION

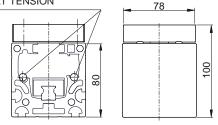

Fx= Max belt strength

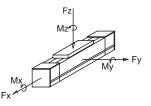

MCS 80 e MCH 80

Registered model

Option: version with additional belt protection (see page 66) Option: short carriage version - code C Accessories: see page 11

GUIDE RAILS WITH CAGED BALL RUNNER BLOCKS


Performances	MCS 80	MCH 80	
Max. stroke	5,700	5,700	[mm]
Max. speed	5	5	[m/s]
Max. acceleration	40	40	[m/s ²]
Repeatability	± 0,1	± 0,1	[mm]
No load torque	0.9	0.9	[Nm]


Suggest	ed working	g load con	ditions			
Module	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
MCS 80	52	400	400	2,150	4,200	4,200
MCH 80	30	290	290	2,150	2,900	2,900
Suggested working load conditions						
Suggest	ed working	g load con	ditions			
Module	M _x [Nm]	g load con M _y [Nm]	ditions M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
	M _x [Nm]			F_x[N] 2,150	F_y[N] 2,100	F_z[N] 2,100

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

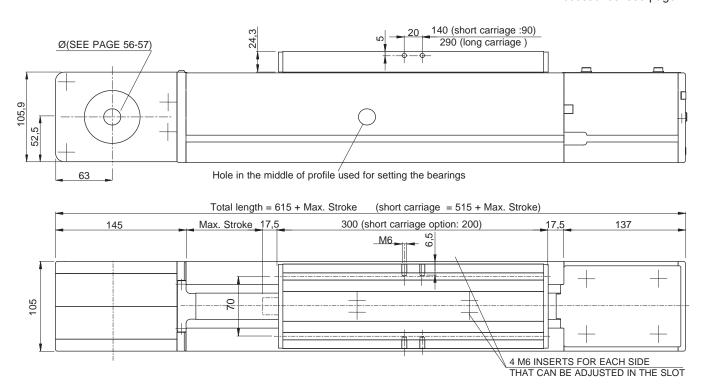
Data	MCS80	- MCH80
Belt	32AT10	
Slide	2 caged ba	all roller slides size 15*
Load bearing profile	80x80	(see page 12)
Pulley Ø	70.03	[mm]
Lead	220	[mm/rev]
* Short carriage option	1 pad	

SCREWS FOR BELT TENSION

Fx= Max belt strength

Weights	MCS80 - I	ИСН80
Inertia of the pulley	0.0010	[kgm ²]
Belt weight	0.38	[kg/m]
Carriage weight	2.6	[kg]
Base module (stroke=0)	M _{base} =9	[kg]
1,000 mm profile	q=8.2	[kg]

Modline


To calculate the module weight use the following formula: M=Mbase+q•strokemax/1,000 Strokemax [mm]

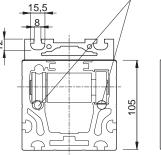
Μ

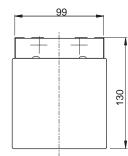
MCR 105

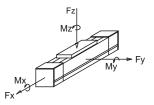
Registered model

Option: version with additional belt protection (see page 66) *Option: short carriage version - (code C) or long carriage (code L) Accessories: see page 11

Performances	MCR 105	
Max. stroke	10,100	[mm]
Max. speed	5	[m/s]
Max. acceleration	20	[m/s ²]
Repeatability	± 0.1	[mm]
No load torque	1.2	[Nm]


Suggested working load conditions						
Module	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _v [N]	F _z [N]
MCR 105	185	580	220	3,300	1,500	2,950


Suggested working load conditions short carriage option						
Module	M _x [Nm]	M _v [Nm]	M _z [Nm]	F _x [N]	F _v [N]	F _z [N]
MCR 105C	185	330	130	3,300	1,450	2,950


The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery.

In case of peak forces acting together please ask the technical dept

Data		
Belt	40AT10	
Slide	Rollers: 4 Ø	37 - 4 Ø 35 [mm]
Load bearing profile	105x105	(see page 12)
Pulley Ø	92.31	[mm]
Lead	290	[mm/rev]

Fx= Max belt strength

Weights		
Inertia of the pulley	0.0037	[kgm ²]
Belt weight	0.47	[kg/m]
Carriage weight	3.5	[kg]
Base module (stroke=0)	M _{base} =16.5	[kg]
1,000 mm profile	q=13	[kg]

To calculate the module weight use the following formula: M=M_{base}+q•stroke_{max}/1,000 Stroke_{max} [mm]

SCREWS FOR BELT TENSION

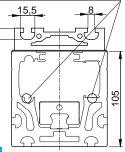
MCS 105 e MCH 105

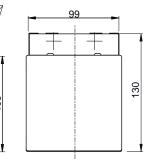
GUIDE RAILS WITH CAGED BALL RUNNER BLOCKS

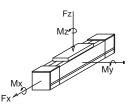
Registered model

Option: version with additional belt protection (see page 66) *Option: short carriage version - (code C) Accessories: see page 11

Performances	MCS 105	MCH 10)5
Max. stroke	10,100	10,100	[mm]
Max. speed	5	5	[m/s]
Max. acceleration	50	50	[m/s ²]
Repeatability	± 0.1	± 0.1	[mm]
No load torque	1.5	1.5	[Nm]

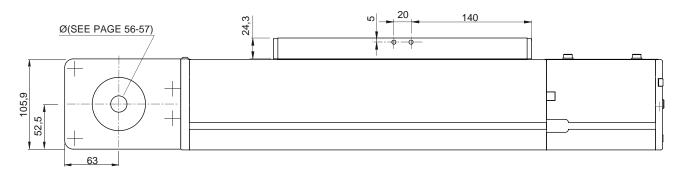

Suggested working load conditions						
Module	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
MCS 105	156	800	800	3,300	9,550	9,550
MCH 105	116	600	600	3,300	6,030	6,030
Suggested working load conditions short carriage option						
Suggested	d working	load condi	tions shor	t carriage	option	
<mark>Suggested</mark> Module	<mark>l working</mark> M _x [Nm]	<mark>load condi</mark> M _y [Nm]	<mark>tions shor</mark> M _z [Nm]	<mark>t carriage</mark> F _x [N]	e option F _y [N]	F _z [N]
	M _x [Nm]					F_z[N] 4,777


The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

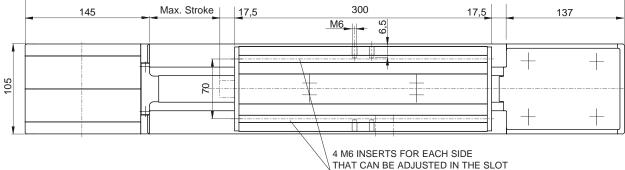

Constuctive data		
Belt	40AT10	
Slide	2 caged ball roller s	lides size 20*
Load bearing profile	105x105	(see page 12)
Pulley Ø	92.31	[mm]
Lead	290	[mm/rev]
* Short corriggo optio	n 1 nod	

* Short carriage option 1 pad

SCREWS FOR BELT TENSION



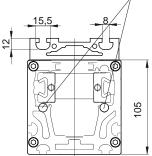
Fx= Max belt strength

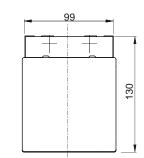

Weights		
Inertia of the pulley	0.0037	[kgm ²]
Belt weight	0.47	[kg/m]
Carriage weight	4.5	[kg]
Base module (stroke=0)	M _{base} =18	[kg]
1,000 mm profile	q=14.3	[kg]

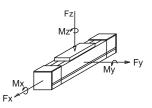
Registered model

Accessories: see page 11

Total length =615 + Max. Stroke




Performances	MCHH 105	
Max. stroke	7,400	[mm]
Max. speed	5	[m/s]
Max. acceleration	50	[m/s ²]
Repeatability	± 0.1	[mm]
No load torque	2.2	[Nm]

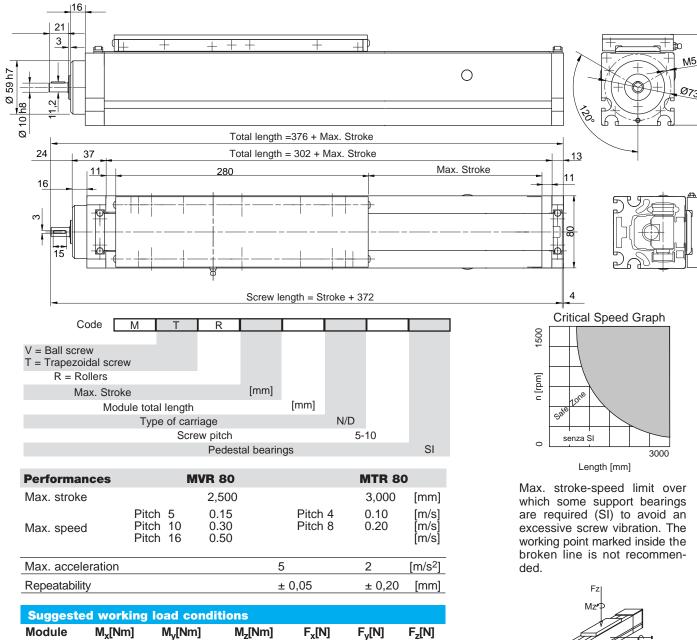

Suggested working load conditions						
Module	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
MCHH 10	5 210	1.033	700	3,300	7,200	6,210

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

Data		
Belt	40ATL10	
Slide	4 caged ball rolle	r slides size 15
Load bearing profile	105x105	(see page 12)
Pulley Ø	92.31	[mm]
Lead	290	[mm/rev]

Fx= Max belt strength

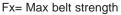
Weights		
Inertia of the pulley	0.0037	[kgm ²]
Belt weight	0.47	[kg/m]
Carriage weight	4.5	[kg]
Base module (stroke=0)	M _{base} =18	[kg]
1,000 mm di profile	q=14	[kg]


To calculate the module weight use the following formula: M=M_{base}+q•stroke_{max}/1,000 Stroke_{max} [mm]

SCREWS FOR BELT TENSION

Modline

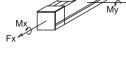
MVR 80 - MTR 80


HARDENED GUIDES WITH CYLINDRICAL ROLLERS - TRAPEZOIDAL BALL SCREW

M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
51	200	80	*1,600	850	1,400
51	200	80	*2,000	850	1,400
	51	51 200	51 200 80	51 200 80 *1,600	51 200 80 *1,600 850

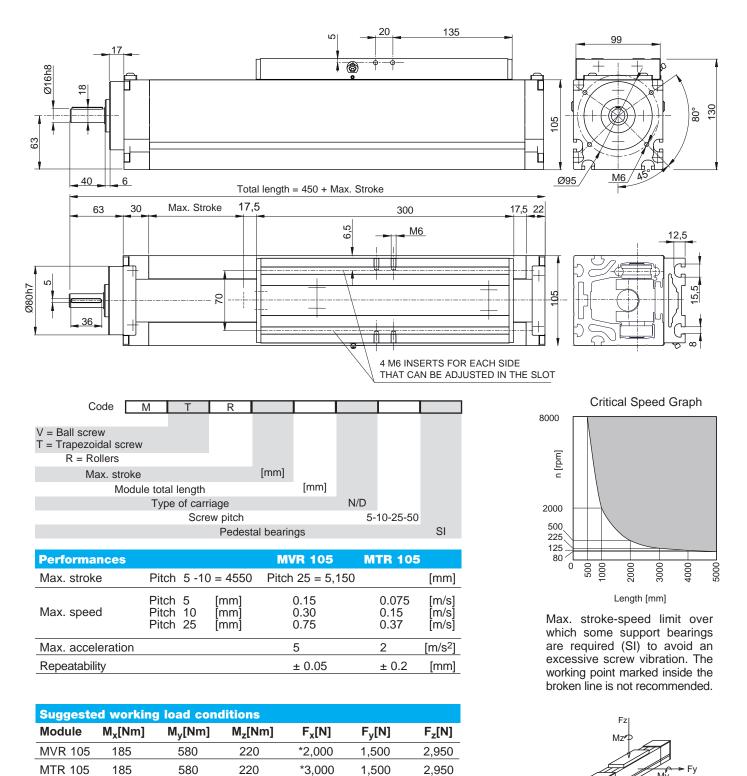
The values shown refer to maximum performance with each force acting individually. The dynamic data shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery.

(*) With a pitch of 5 mm



Data			
Slide	Rollers: 4	Ø24 - 4 Ø	ð22 [mm]
Beam	80x80	(see pa	age 12)
Øscrew	16		[mm]
Length of the screw	367+ _{max} s	stroke	[mm]

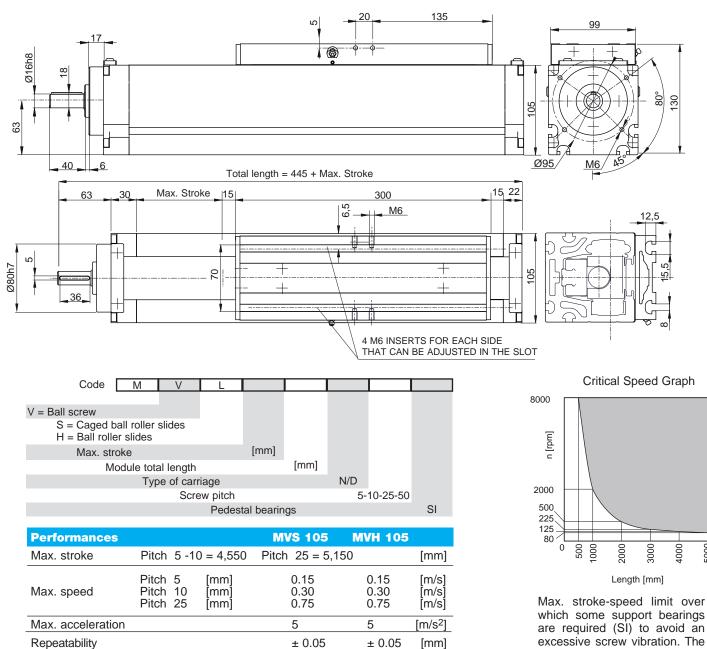
Weights		
Inertia of the worm	0.0003 • L. screw(m)	[kgm ²]
Carriage weight	2.5 c.a.	[kg]
Base module (stroke=0)	M _{base} = 5.5 approx.	[kg]
1,000 mm profile	q=8 approx.	[kg]


M L

8

MVR 105 e MTR 105

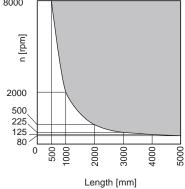
Registered model


The values shown refer to maximum performance with each force acting individually. The dynamic data shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. (*) With a pitch of 5 mm

Data		
Slide	Rollers: 4 Ø 3	7 - 4 Ø 35 [mm]
Beam	105x105	(see page 12)
Øscrew	25	[mm]
Length of the screw	440+ _{max} stroke	e [mm]

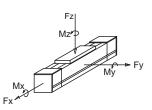
Fx= Max belt strength

Weights		
Inertia of the worm	0.0003 • L. screw(m) [kgm²]
Carriage weight	4 approx.	[kg]
Base module (stroke=0)	M _{base} =11	[kg]
1,000 mm profile	q=17.2 approx.	[kg]

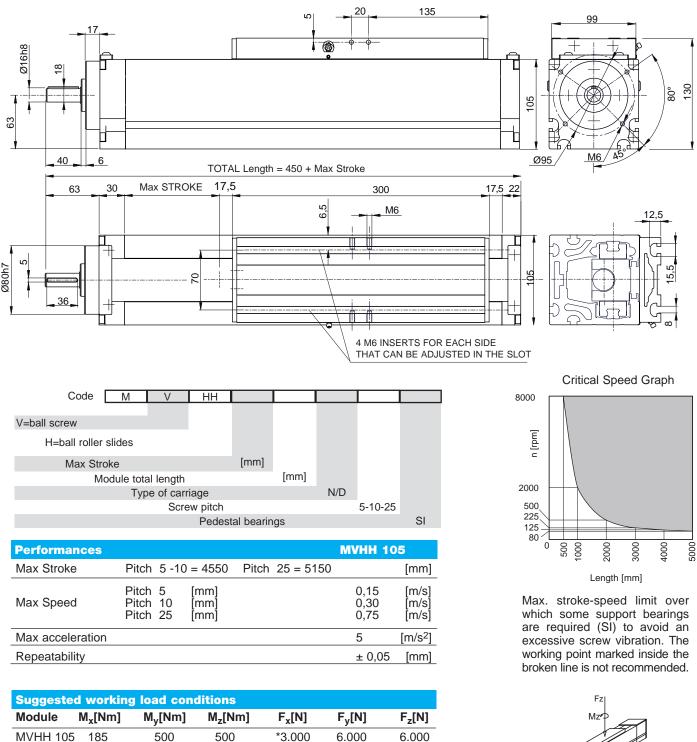


Suggested working load conditions						
Module	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
MVS 105	156	800	800	3,000(*)	9,550	9,550
MVH 105	116	600	600	3,000(*)	6,030	6,030

The values shown refer to maximum performance with each force acting individually. The dynamic data shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. (*) With a pitch of 5 mm

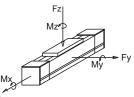

Data		
Slide	2 caged ball roller slid	es size 20
Beam	105x105 (see p	age 12)
Øscrew	25	[mm]
Length of the screw	440+ _{max} stroke	[mm]

		0
Weights		
Inertia of the worm	0.0003 • L. screw(m)	[kgm ²]
Carriage weight	4 approx.	[kg]
Base module (stroke=0)	M _{base} =12	[kg]
1,000 mm profile	q=17.2 approx.	[kg]


Modline

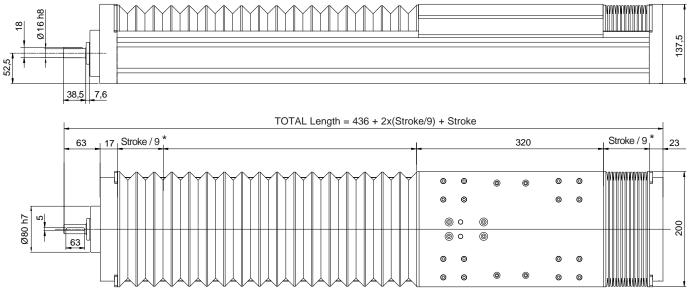
which some support bearings are required (SI) to avoid an excessive screw vibration. The working point marked inside the broken line is not recommended.

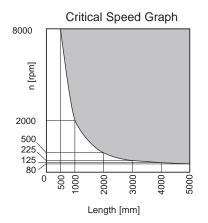
Fx= Max belt strength


Registered model

The values shown refer to maximum performance with each force acting individually. The dynamic data shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery.

Data		
Slide	4 caged ball roller slides	size 15
Beam	105x105 (see pag	je 12)
Øscrew	25	[mm]
Length of the screw	440+stroke _{max}	[mm]


(*) With a pitch of 5 mm

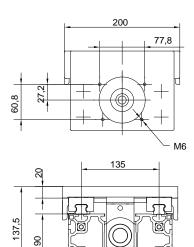

Fx= Max belt strength

Weights		
Inertia of the worm	0,0003 • L. screw(m)) [kgm ²]
Carriage weight	4 c.a.	[kg]
Base module (stroke=0)	M _{base} =13	[kg]
1,000 mm profile	q=17,5 approx.	[kg]

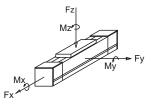
Fx

*valore indicativo

Max. stroke-speed limit over which some support bearings are required (SI) to avoid an excessive screw vibration. The working point marked inside the broken line is not recommended.

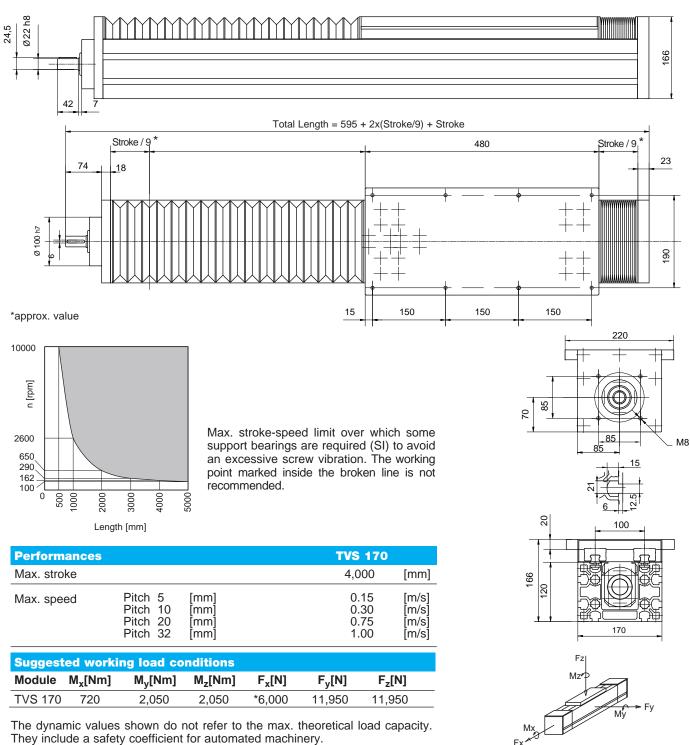

Performances		TVH 180	
Max Stroke	Pitch 5 -10 = 4550	Pitch 25 = 5150	[mm]
Max Speed	Pitch 5 [mm] Pitch 10 [mm] Pitch 25 [mm]	0,15 0,30 0,75	[m/s] [m/s] [m/s]

Suggested working load conditions							
Module	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]	
TVH 180	600	850	850	*3.000	9.200	9.200	


The values shown refer to maximum performance with each force acting individually. The dynamic data shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery.

(*) With a pitch of 5 mm

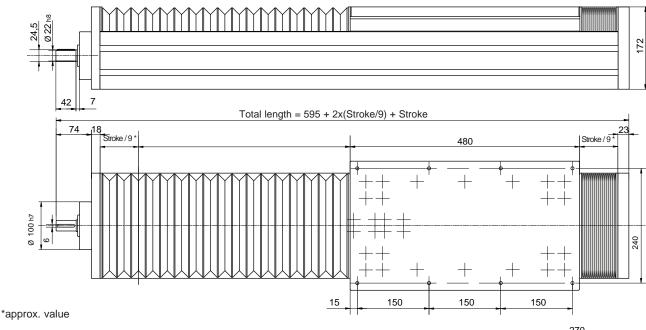
Data				
Slide	4 caged ba	all roller slides size 20		
Beam	E01-5	(see page 13)		
Øscrew	25	[mm]		
Bellow	heat-sea	heat-sealed, plastic		

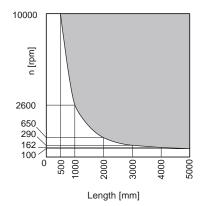


10

Fx= Max belt strength

Weights		
Inertia of the worm	0,0003 • L. screw(m)	[kgm ²]
Carriage weight	7	[kg]
Base module (stroke=0)	M _{base} = 20	[kg]
1,000 mm profile	q= 20	[kg]


In case of peak forces acting together please ask the technical dept.


(*) With a pitch of 10 mm

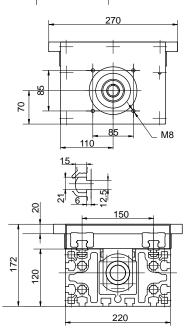
Data				
Slide	4 caged ball roller slides siz	e 20		
Beam	Statyca (see page	14)		
Øscrew	32 [n	nm]		
Bellow	heat-sealed, plastic	heat-sealed, plastic		

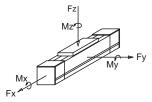
Fx= Max belt strength

Weights		
Inertia of the worm	0,0006 • L. screw	/(m) [kgm ²]
Carriage weight	11	[kg]
Base module (stroke=0)	M _{base} = 36	[kg]
1,000 mm profile	q= 28	[kg]

Max. stroke-speed limit over which some support bearings are required (SI) to avoid an excessive screw vibration. The working point marked inside the broken line is not recommended.

Performances	es TVS 22 0			
Max. stroke			4,000	[mm]
Max. speed	Pitch 5 Pitch 10 Pitch 20 Pitch 32	[mm] [mm] [mm] [mm]	0.15 0.30 0.75 1.00	[m/s] [m/s] [m/s] [m/s]


Suggeste	ed workin	g load con	ditions			
Module	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
TVS 220	1,300	3,200	3,200	*6,000	18,300	18,300


The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery.

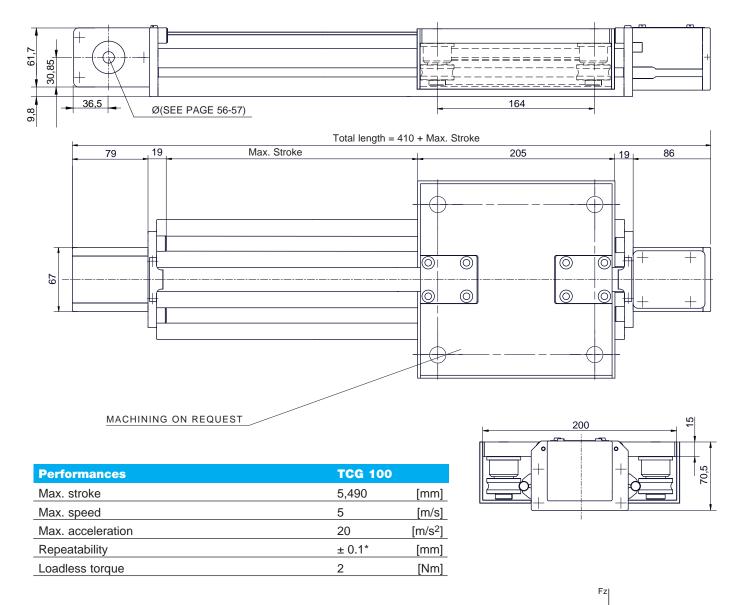
In case of peak forces acting together please ask the technical dept.

(*) With a pitch of 10 mm

Data				
Slide	4 caged ba	Il roller slides size 25		
Beam	Logyca	(see page 14)		
Øscrew	32	[mm]		
Bellow	heat-sea	heat-sealed, plastic		

Fx= Max belt strength

Weights		
Inertia of the worm	0.0006 • L. screw(m)	[kgm ²]
Carriage weight	13	[kg]
Base module (stroke=0)	M _{base} = 44	[kg]
1,000 mm profile	q= 37	[kg]

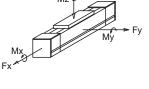

To calculate the module weight use the following formula: M=M_{base}+q•stroke_{max}/1,000 Stroke_{max} [mm]

Modline

TCG 100

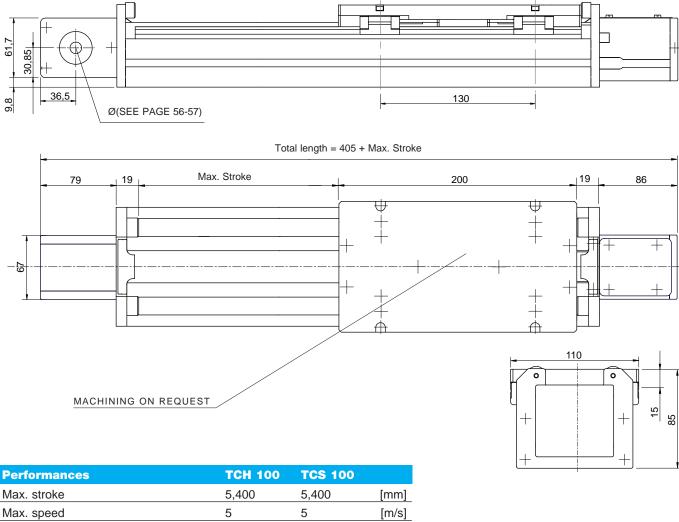
HARDENED GUIDE RAILS AND CYLINDRICAL SHAPED ROLLERS

Registered model



Suggested working load conditions						
Module	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
TCG 100	40	120	200	1,100	1,700	1,200

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept


Assembly positions and load direction, see page 10

Data		
Belt	25AT5	
Slide	4 shaped	rollers Ø35[mm]
Load bearing profile	MA 1-4	(see page 13)
Pulley Ø	50.93	[mm]
Linear displacement per revolution	160	[mm]

Fx= Max belt strength

Weights		
Inertia of the pulley	-	[kgm ²]
Belt weight	0.21	[kg/m]
Carriage weight	2.5	[kg]
Base module (stroke=0)	M _{base} =6.4	[kg]
1,000 mm profile	q=8.3	[kg]

Max. stroke	5,400	5,400	[mm]
Max. speed	5	5	[m/s]
Max. acceleration	50	50	[m/s ²]
Repeatability	± 0.1	± 0.1	[mm]
Loadless torque	-	-	[Nm]

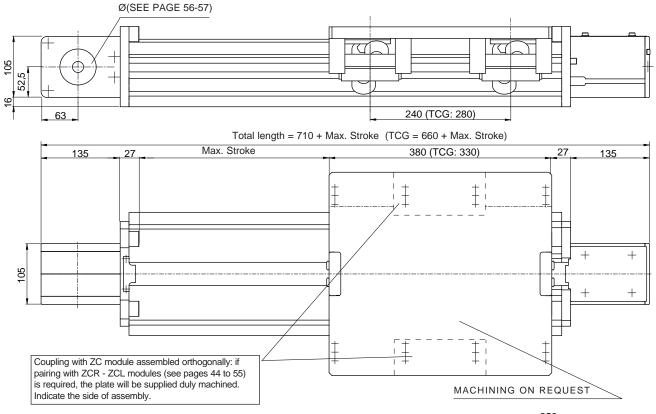
Suggested working load conditions						
Module	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
TCH 100	138	324	324	1,180	4,100	4,100
TCS 100	150	324	324	1,180	4,100	4,100

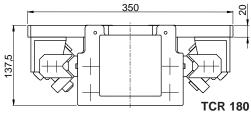
The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

Data	
Belt	25AT5
Sliding	aged ball roller slides size15
Load bearing profile	MA 1-4 (see page 13)
Pulley Ø	50.93 [mm]
Linear displacement per revolution	n 160 [mm]

Fz	
Mz	
	My Fy
Mx	-
Fx	

Fx= Max belt strength


Weights		
Inertia of the pulley	-	[kgm ²]
Belt weight	0.21	[kg/m]
Carriage weight	2.6	[kg]
Base module (stroke=0)	M _{base} =6.5	[kg]
1,000 mm profile	q=9.2	[kg]

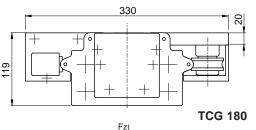

TCR 180 e TCG 180

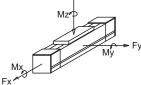
WITH V-SHAPED GUIDE RAILS AND ROLLER SLIDES OR SHAPED ROLLERS

Registered model

Accessories: see page 11

Performances	TCR 180	TCG 180	
Max. stroke	7,480	7,540	[mm]
Max. speed	5	5	[m/s]
Max. acceleration	20	20	[m/s ²]
Repeatability	± 0.1	± 0.1	[mm]
Loadless torque	4.2	1.2	[Nm]


Suggested working load conditions						
Module	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
TCR 180	630	800	800	3,300	7,320	7,320
TCG 180	220	270	540	3.300	3.400	1.800


The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

Assembly positions and load direction, see page 10

Data	TCR 180	TCG 180				
Belt	40A	TL10				
Slide	e 4 roller slides with 2 rollers					
	4 rollers Ø 5	2, guide Ø16				
Load bearing profile	E01-5	(see page 13)				
Pulley Ø	92.31	[mm]				
Linear displacement p	er rev. 290	[mm]				

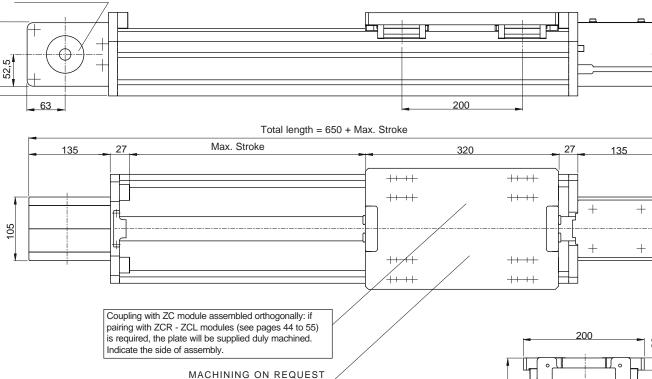
To calculate the module weight use the following formula: M=M_{base}+q•stroke_{max}/1,000 Stroke_{max} [mm]

Fx= Max belt strength

Weights	TCR 180	TCG 1	B0
Inertia of the pulley	0.00)37	[kgm ²]
Belt weight	0.55		[kg/m]
Carriage weight	12.4	10.6	[kg]
Base module (stroke=0)	M _{base} =32	27.6	[kg]
1,000 mm profile	q=21	q=16.8	[kg]

TCH 180 e TCS 180

Ø(SEE PAGE 56-57)

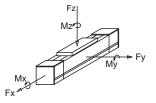

GUIDE RAILS WITH CAGED BALL ROLLER SLIDES

Registered Model

105

9

Accessories: see page 11



Performances	TCH 180	TCS 180	
Max. stroke	7,340	7,340	[mm]
Max. speed	5	5	[m/s]
Max. acceleration	50	50	[m/s ²]
Repeatability	± 0.1	± 0.1	[mm]
Loadless torque	3.2	3.2	[Nm]

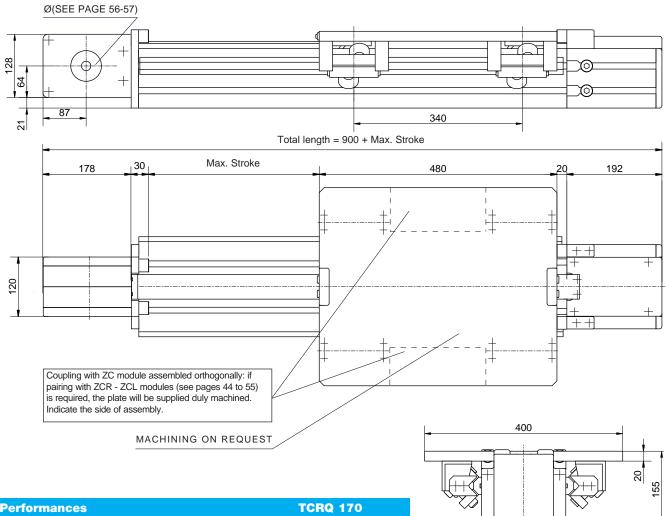
Suggested working load conditions						
Module	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
TCH 180	600	850	850	3,300	9,200	9,200
TCS 180	960	1,350	1,350	3,300	10,950	10,950

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

Data	TCH 18	0 - TCS 180		
Belt	40ATL10			
Slide	4 caged ball slides size 20			
Load bearing profile	E01-5	(see page 13)		
Pulley Ø	92.31	[mm]		
Linear displacement per rev.	290	[mm]		

Fx= Max belt strength

Weights	TCH 180 - TCS 180		
Inertia of the pulley	0.0037	[kgm ²]	
Belt weight	0.55	[kg/m]	
Carriage weight	6	[kg]	
Base module (stroke=0)	M _{base} =23.6	[kg]	
1,000 mm profile	q=19	[kg]	


	20	00	20
137,5		• • • • • • • • • • • • • • • • • • •	- -

Modline

TCRQ 170

Registered model

Accessories: see page 11

Performances	ICRQ 1	10
Max. stroke	5,480	[mm]
Max. speed	7	[m/s]
Max. acceleration	20	[m/s ²]
Repeatability	± 0.1	[mm]
Loadless torque	4.2	[Nm]

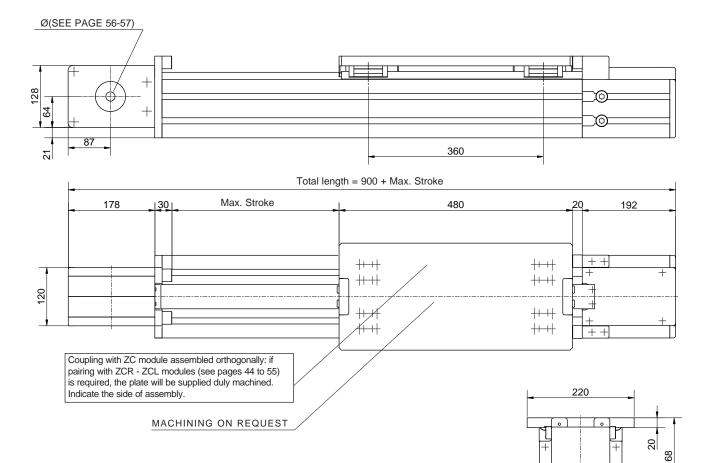
Suggested working load conditions						
Module	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
TCRQ 17	0 620	1,100	1,100	4,000	7,620	7,620

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

Assembly positions and load direction, see page 10

Data		
Belt	50ATL10	
Slides	4 slides 2	rollers Ø40[mm]
Load bearing profile	Statyca	(see page 14)
Pulley Ø	95.49	[mm]
Linear displacement per rev.	300	[mm]

Fx= Max belt strength

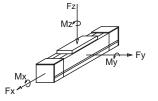

Weights		
Inertia of the pulley	0.0053	[kgm ²]
Belt weight	0.68	[kg/m]
Carriage weight	14.6	[kg]
Base module (stroke=0)	M _{base} =44.6	[kg]
1,000 mm profile	q=25	[kg]

TCH 170 e TCS 170

Modline

Registered Model

Accessories: see page 11

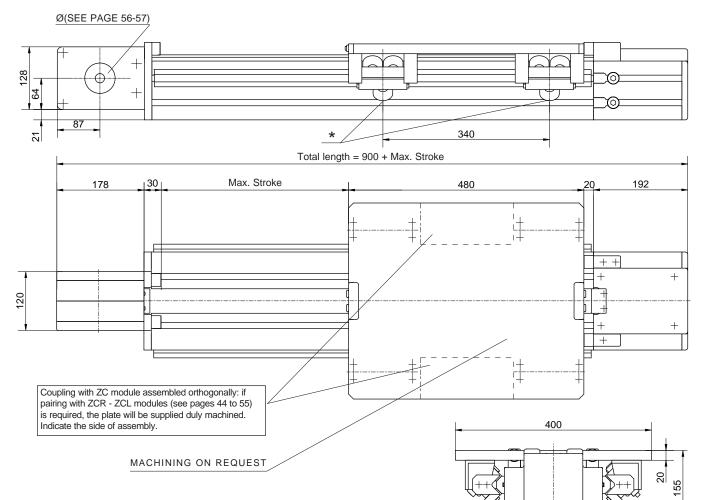


Performances	TCH 170	TCS 170	
Max. stroke	5,480	5,480	[mm]
Max. speed	5	5	[m/s]
Max. acceleration	50	50	[m/s ²]
Repeatability	± 0.1	± 0.1	[mm]
Loadless torque	4.8	4.8	[Nm]

Suggested working load conditions						
Module	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
TCH 170	450	1,430	1,430	4,000	9,400	9,400
TCS 170	720	2,050	2,050	4,000	11,950	11,950

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

Data	TCH 17	0 - TCS 170
Belt	50ATL10	
Slide	4 caged b	all slides size 20
Load bearing profile	Statyca	(see page 14)
Pulley Ø	95.49	[mm]
Linear displacement per rev.	300	[mm]

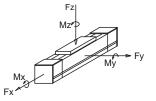

Fx= Max belt strength

Weights	TCH 170 - TCS 170		
Inertia of the pulley	0.0053	[kgm ²]	
Belt weight	0.68	[kg/m]	
Carriage weight	8.6	[kg]	
Base module (stroke=0)	M _{base} =38	[kg]	
1,000 mm profile	q=23	[kg]	

TCRQ 200

Registered model

Accessories: see page 11


*: Please specify the roller orientation according to the barycentre of the applied load. Values corresponding to the most favourable load position.

Performances			TCRQ 2	00	
			8,480	[mm]	
			5	[m/s]	
Max. acceleration			20	[m/s ²]	
Repeatability			± 0.1	[mm]	
Loadless torque			4.2	[Nm]	
Suggested working load conditions					
M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]	
1,600(*)	1,300	4,000	7,620	12,500 (*)	
	M _y [Nm]	M _y [Nm] M _z [Nm]	M _y [Nm] M _z [Nm] F _x [N]	8,480 5 20 ± 0.1 4.2 og load conditions M _y [Nm] M _z [Nm] F _x [N] F _y [N]	

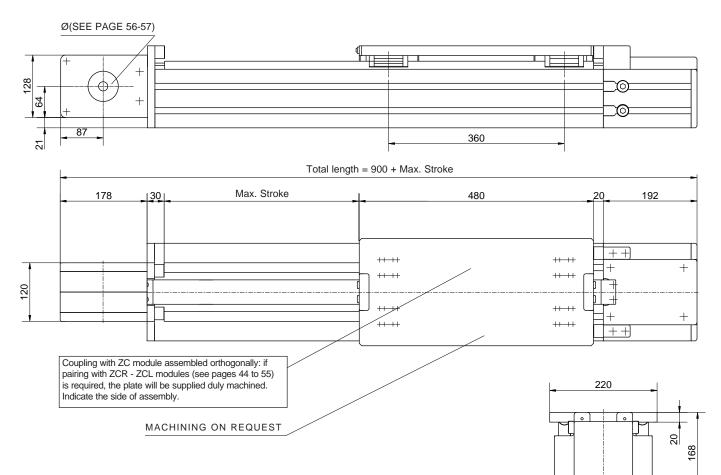
The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

Assembly positions and load direction, see page 10

Data		
Belt	50ATL10)
Slide	4 slides 3	3 roll. Ø40 [mm]
Load bearing profile	Valyda	(see page 14)
Pulley Ø	95.49	[mm]
Linear displacement per rev.	300	[mm]

Fx= Max belt strength

Weights		
Inertia of the pulley	0.0053	[kgm ²]
Belt weight	0.68	[kg/m]
Carriage weight	15	[kg]
Base module (stroke=0)	M _{base} =52	[kg]
1,000 mm profile	q=30	[kg]


TCH 200 e TCS 200

GUIDE RAILS WITH CAGED BALL ROLLER SLIDES

Modline

Registered model

Accessories: see page 11

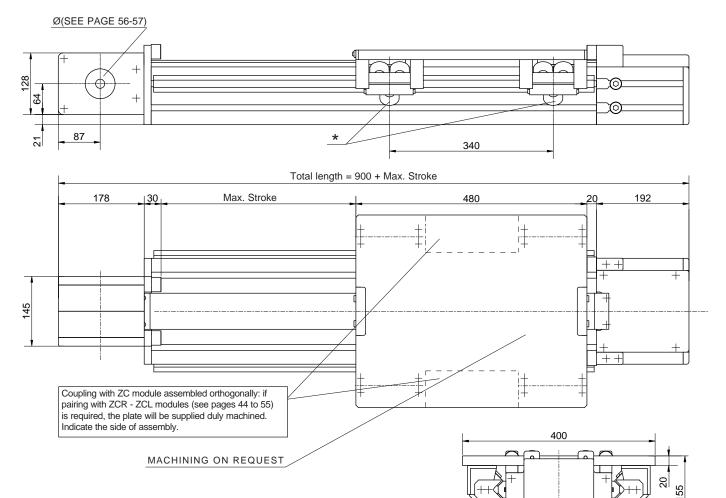
Performances	TCH 200	TCS 200	
Max. stroke	8,480	8,480	[mm]
Max. speed	5	5	[m/s]
Max. acceleration	50	50	[m/s ²]
Repeatability	± 0.1	± 0.1	[mm]
Loadless torque	4.8	4.8	[Nm]
Suggested working load con	ditions		
Module M _x [Nm] M _y [Nm]	M _z [Nm] F _x [N	I] F _v [N]	F ₇ [N]

Module	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
TCH 200	500	1,430	1,430	4,000	9,400	9,400
TCS 200	810	2,050	2,050	4,000	13,950	13,950

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

Data	TCH 20	0 - TCS 2 00
Belt	50ATL10	
Slide	4 caged ba	Il slides size 20
Load bearing profile	Valyda	(see page 14)
Pulley Ø	95.49	[mm]
Linear displacement per rev	. 300	[mm]

F	z
Ma	²⁷
Ĺ	
	My Fy
Mx Fx	
FX	

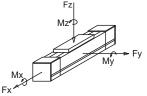

Fx= Max belt strength

Weights	TCH 200 - TCS 200		
Inertia of the pulley	0.0053	[kgm ²]	
Belt weight	0.68	[kg/m]	
Carriage weight	8,8	[kg]	
Base module (stroke=0)	M _{base} =42	[kg]	
1,000 mm profile	q=27.5	[kg]	

TCRQ 220

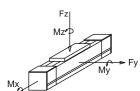
Registered model

Accessories: see page 11


* : Please specify the roller orientation according to the barycentre of the applied load. Values corresponding to the most favourable load position.

Performance	S				TCRQ 22	20
Max. stroke					11,480	[mm]
Max. speed					5	[m/s]
Max. accelerati	on				20	[m/s ²]
Repeatability					± 0.1	[mm]
Loadless torque	е				5.8	[Nm]
Suggested wo	orking l	oad con	ditions			
Module M _x [I	Nm] N	/l _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
TCRQ220 1,40	00(*) 1	,600(*)	1,300	6,000	7,620	12,500(*)

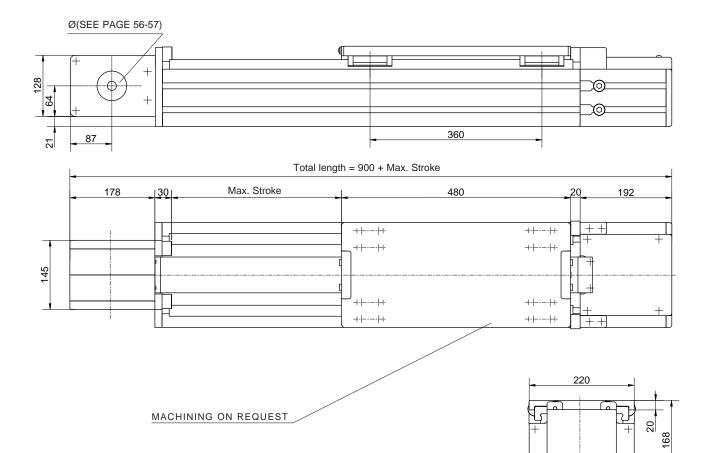
The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept


Assembly positions and load direction, see page 10

Data		
Belt	75ATL10)
Slide	4 slides 3	3 roll. Ø 40[mm]
Load bearing profile	Logyca	(see page 14)
Pulley Ø	95.49	[mm]
Linear displacement per rev.	300	[mm]

Fx= Max belt strength

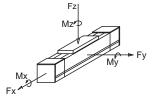
Weights		
Inertia of the pulley	0,0082	[kgm ²]
Belt weight	1,02	[kg/m]
Carriage weight	16	[kg]
Base module (stroke=0)	M _{base} =54.6	[kg]
1,000 mm profile	q= 33.7	[kg]



TCH 220 - TCS 220

Registered model

Accessories: see page 11



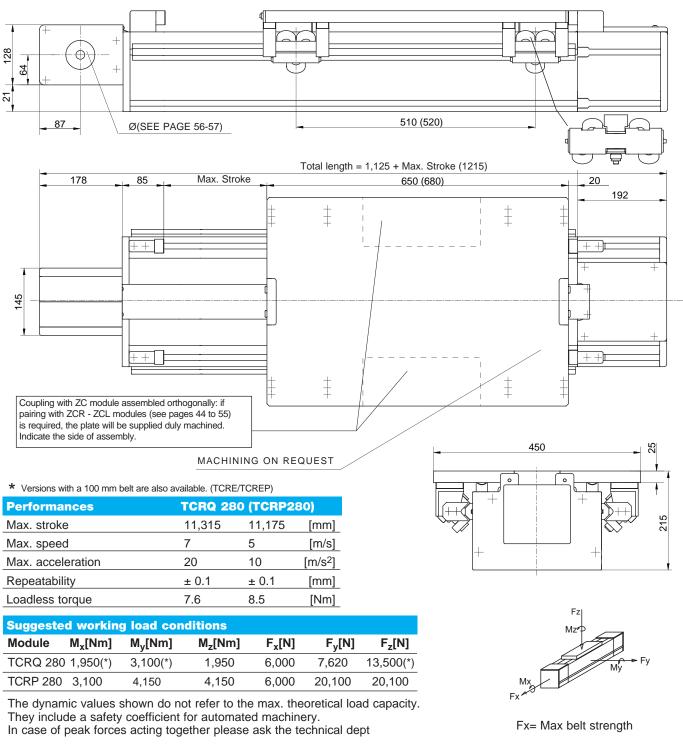
Performances	TCH 220	TCS 220	
Max. stroke	11,480	11,480	[mm]
Max. speed	5	5	[m/s]
Max. acceleration	50	50	[m/s ²]
Repeatability	± 0.1	± 0.1	[mm]
Loadless torque	6.9	6.9	[Nm]

Suggested working load conditions						
Module	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
TCH 220	950	2,200	2,200	6,000	13,000	13,000
TCS 220	1,300	3,200	3,200	6,000	18,300	18,300

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

Data	TCH 22	0 - TCS 220
Belt	75ATL10	
Slide	4 caged ba	all slides size 25
Load bearing profile	Logyca	(see page 14)
Pulley Ø	95.49	[mm]
Linear displacement per rev.	300	[mm]

Fx= Max belt strength


Weights	TCH 220 - T	CS 220
Inertia of the pulley	0.0082	[kgm ²]
Belt weight	1.02	[kg/m]
Carriage weight	9.5	[kg]
Base module (stroke=0)	M _{base} =47.4	[kg]
1,000 mm profile	q=33	[kg]

TCRQ 280 (TCRP 280)

Registered model*

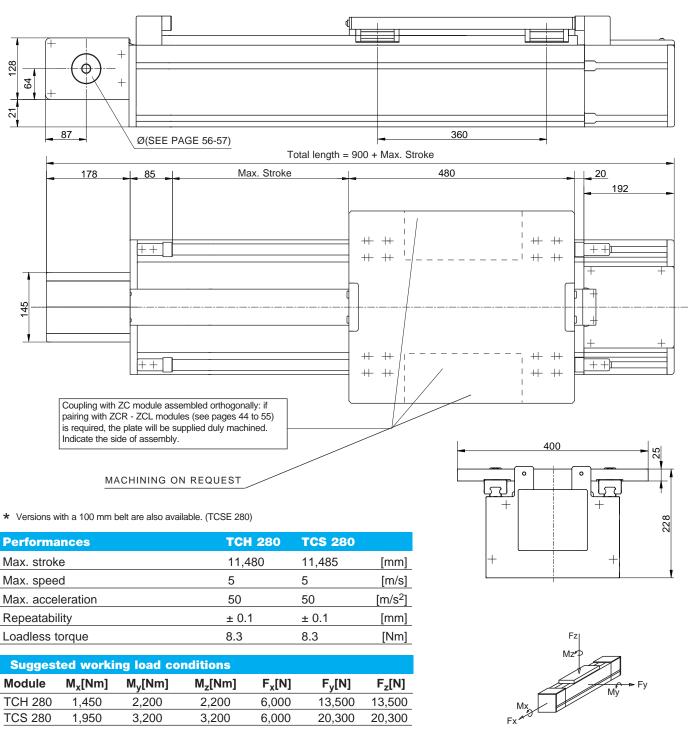
RP= Heavy guide rails and roller slides - Ø52

Accessories: see page 11

Assembly positions and load direction, see page 10

Data	TC	RQ 280	(TCRP 280)
Belt		75 ATL 1	0
Slide	4 slides 3 rollers Ø40	4 slides 4	rollers Ø52 [mm]
Load be	aring profile	Pratyca	(see page 15)
Pulley Ø	i	95.49	[mm]
Linear displacement per rev.		300	[mm]

Weights	TCRQ 28	O (TCF	RP 280)
Inertia of the pulley	0.0	082	[kgm ²]
Belt weight	1.02	2	[kg/m]
Carriage weight	27	55	[kg]
Base module	M _{base} =87	M _{base} =	122 [kg]
1,000 mm profile	q=48	q=56	[kg]


TCH 280 - TCS 280

GUIDE RAILS WITH CAGED BALL ROLLER SLIDES

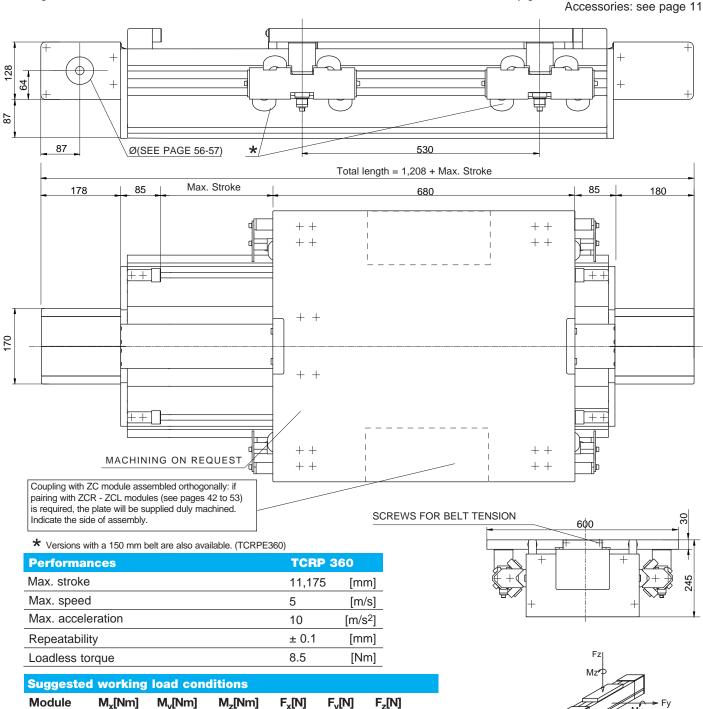
Registered model

Accessories: see page 11

Modline

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

Data	TCH 28	0 - TCS 2 80	
Belt	75 ATL 1	0	
Slide	4 caged ball slides size 2		
Load bearing profile	Pratyca	(see page 15)	
Pulley Ø	95.49	[mm]	
Linear displacement per rev.	300	[mm]	


Weights	TCH 280 - TC	S 280
Inertia of the pulley	0.0082	[kgm ²]
Belt weight	1.02	[kg/m]
Carriage weight	18	[kg]
Base module (stroke=0)	M _{base} =69	[kg]
1,000 mm profile	q= 47	[kg]

Fx= Max belt strength

To calculate the module weight use the following formula: **M=M_{base}+q•stroke_{max}/1,000** Stroke_{max} [mm]

ML-41

RP= Heavy guide rails and roller slides - Ø52 Accessories: see page 11

 TCRP 360
 4,900
 5,300
 5,300
 8,000
 25,400
 25,400

 The dynamic values shown do not refer to the max. theoretical load capacity.
 They include a safety coefficient for automated machinery.

They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

Assembly positions and load direction, see page 10

Data		
Belt	100 ATL	10
Slide	4 slides 4	rollers Ø52 [mm]
Load bearing profile	Solyda	(see page 15)
Pulley Ø	95.49	[mm]
Linear displacement per rev.	300	[mm]

Weights		
Inertia of the pulley	0.0082	[kgm ²]
Belt weight	1.02	[kg/m]
Carriage weight	55	[kg]
Base module (stroke=0)	M _{base} =137	[kg]
1,000 mm profile	q=75	[kg]

Mx

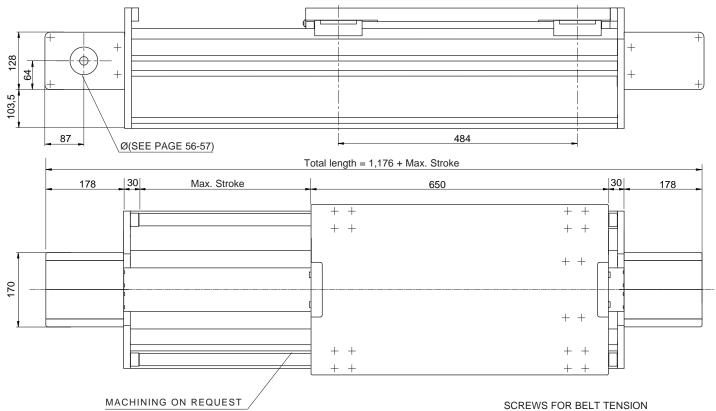
Fx= Max belt strength

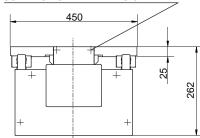
Fx

To calculate the module weight use the following formula: $M=M_{base}+q$ -stroke_{max}/1,000 Stroke_{max} [mm]

TCRP 360

Registered model


TCH 360 - TCS 360


GUIDE RAILS WITH CAGED BALL ROLLER SLIDES

Modline

Registered model

Accessories: see page 11

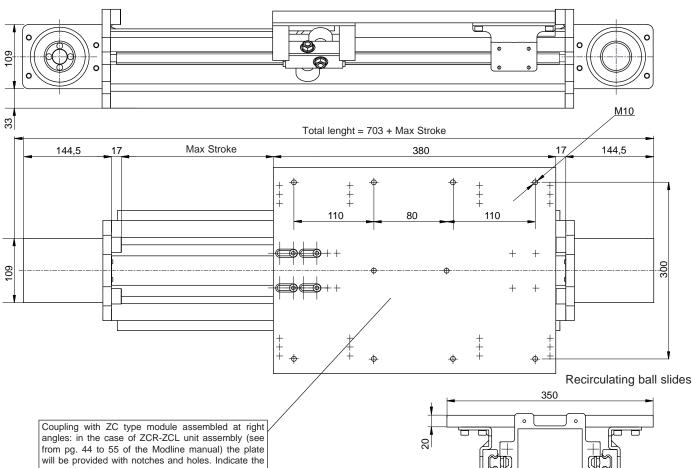
Fx= Max belt strength

* Versions with a 150 mm belt are also available. (TCSE360)

Performances	TCH 360	TCS 360	
Max. stroke	11,480	11,485	[mm]
Max. speed	5	5	[m/s]
Max. acceleration	50	50	[m/s ²]
Repeatability	± 0.1	± 0.1	[mm]
Loadless torque	8.3	8.3	[Nm]

Suggested working load conditions						
Module	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
TCH 360	2,600	3,710	3,710	8,000	19,050	19,050
TCS 360	4,000	5,500	5,500	8,000	28,600	28,600

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

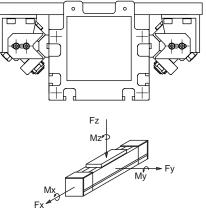

Data	TCH 36	60 - TCS 360	
Belt	100 ATL	10	
Slide	4 caged ball roller slides 3		
Load bearing profile	Solyda	(see page 15)	
Pulley Ø	95.49	[mm]	
Linear displacement per rev.	300	[mm]	

Weights	TCH 360 - TCS 36		
Inertia of the pulley	0.0082	[kgm ²]	
Belt weight	1.02	[kg/m]	
Carriage weight	28	[kg]	
Base module (stroke=0)	M _{base} =105	[kg]	
1,000 mm profile	q= 70	[kg]	

Mx Fx

TECRQ - TECH 170 (EASY)

TRAPEZOIDAL GUIDES AND ROLLER SLIDES OR RECIRCULATING BALL SLIDES


assembly side.

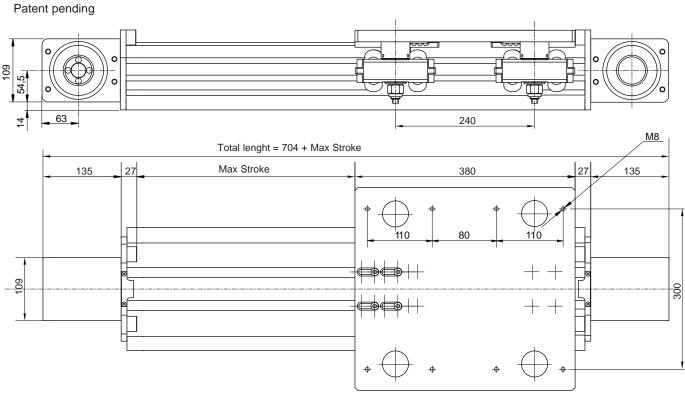
Performances	TECR 170	TECH 170	
Max stroke	5.560	5.560	[mm]
Max speed	5	4	[m/s]
Max acceleration	15	20	[m/s ²]
Repositioning accuracy	± 0.1	± 0.1	[mm]
Loadless torque	4.2	4.8	[Nm]

Suggested working load conditions						
Module	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
TECR 170) 620	1.600	1.600	4.000	6.000	6.000
TECH 170) 580	900	1.050	4.000	7.620	7.620

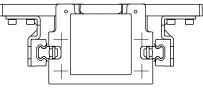
The dynamic values indicated do not correspond to maximum theoretical load capacities. They already take safety factors into account which are suitable for machinery in the automation sector. In the event of combined stress consult the technical support service.

Constructive data	TECR 170 - TECH	170
Belt	50 ATL 10	
Sliding (TECR170)	4 roller slides	[mm]
Sliding (TECH 170)	4 ball slides size 20	[mm]
Profile	Statyca	
Pulley Ø	95,49	[mm]
Linear displacement per revolution	300	[mm]

 $\cap \pm$

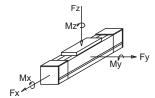

Roller slides

Fx= Max belt strenght


Weight	TECH 170 - T	ECR 170
Inertia of the pulley	0,0053	[kgm ²]
Belt weight	0,68	[kg/m]
Carriage weight	8,6	[kg]
Base module (corsa=0)	M _{base} = 38	[kg]
1.000 mm profile	q=23	[kg]

ĔΓ

Modline



Recirculating ball slides

Roller slides

350	-
	↓
	137,5
F =1	

Fx= Max belt strenght

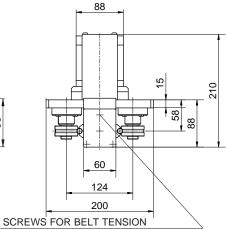
Weight		
Inertia of the pulley	0,0037	[kgm ²]
Belt weight	0,55	[kg/m]
Carriage weight	13	[kg]
Base module (stroke=0)	M _{base} =33	[kg]
1.000 mm profile	q=16	[kg]

To calculate the module weight use the following formula: M=M_{base}+q•Stroke_{max}/1.000 Stroke_{max} [mm]

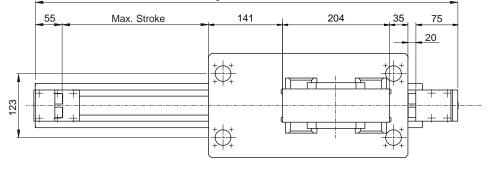
I	I	
		Recirculat

Performances	TECRR 180	
Max stroke	7.480	[mm]
Max speed	5	[m/s]
Max acceleration	20	[m/s ²]
Repositioning accuracy	± 0,1*	[mm]
Loadless torque	4,2	[Nm]

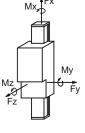
TECRR 180 - TECH 180 (EASY)


Suggest	ed workin	ig load cor	nditions			
Module	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
TECRR18	30 490	1.170	1.170	2.700	5.900	5.900

The dynamic values indicated do not correspond to maximum theoretical load capacities. They already take safety factors into account which are suitable for machinery in the automation sector. In the event of combined stress consult the technical support service.


40ATL10	
4 slides 4 rollen Ø30	[mm]
180x90	
92,31	[mm]
290	[mm]
	4 slides 4 rollen Ø30 180x90 92,31

Accessories: see page 11


Total length = 530 + Max. Stroke

60x90 profile available

IMPORTANT: when pairing ZC... modules with TC... modules, please check the required Z axis stroke, as this could be limited by the size of the module plates sizes.

Max. stroke5,4Max. speed4Max. acceration20	0 [mm]
•	
Max acceration 20	[m/s]
	[m/s ²]
Repeatability ± 0	1 [mm]

Fx= Max belt strength

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

M_z[Nm]

340

Assembly positions and load direction, see page 10

M_v[Nm]

200

Suggested working load conditions

M_x[Nm]

60

Data		
Belt	32AT10	
Slide	4 shaped	roller slides Ø 42 [mm]
Load bearing profile	F01-1	(see page 12)
Pulley Ø	70.03	[mm]
Linear displacement per rev.	220	[mm]

Weights		
Inertia of the pulley	0.0013	[kgm ²]
Belt weight	0.19	[kg/m]
Carriage weight	10	[kg]
Base module (stroke=0)	M _{base} =14	[kg]
1,000 mm profile	q=6	[kg]

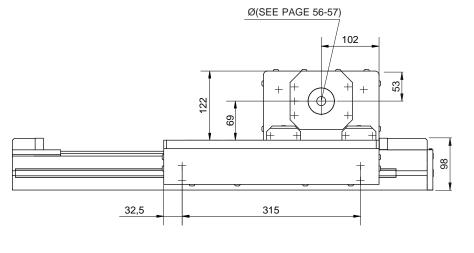
To calculate the module weight use the following formula: M=M_{base}+q•stroke_{max}/1,000 Stroke_{max} [mm]

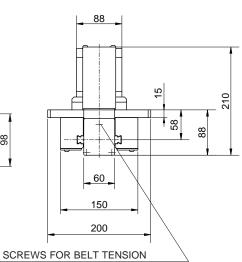
F_x[N]

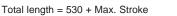
2,000

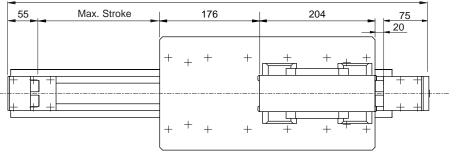
F_v[N]

2,100


F_z[N]


1,500


Module


ZCG 60

Accessories: see page 11

60x90 profile available

IMPORTANT: when pairing ZC... modules with TC... modules, please check the required Z axis stroke, as this could be limited by the size of the module plates sizes.

Performances	ZCL 60	
Max. stroke	5,470	[mm]
Max. speed	4	[m/s]
Max. acceleration	40	[m/s ²]
Repeatability	± 0.1	[mm]

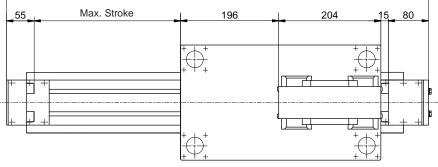
	Mx,	Fx >	
	Ĺ		
Mz			My
Fz			,

Fx= Max belt strength

Suggested working load conditions						
Module	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
ZCL 60	151	570	630	2,000	4,180	3,740

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

Dete			
Data Belt	32AT10		
Slide	4 caged ball roller slides 15		
Load bearing profile	F01-1	(see page 12)	
Pulley Ø	70.03	[mm]	
Linear displacement per rev.	220	[mm]	


Weights		
Inertia of the pulley	0.0013	[kgm ²]
Belt weight	0.19	[kg/m]
Carriage weight	11	[kg]
Base module (stroke=0)	M _{base} =16	[kg]
1,000 mm profile	q=7.2	[kg]

540

90x180 profile available

IMPORTANT: when pairing ZC... modules with TC... modules, please check the required Z axis stroke, as this could be limited by the size of the module plates sizes.

Performances			Z	2CG 90		
Max. stroke			5	5,450	[mm]	
Max. speed			4	ļ	[m/s]	
Max. acceleration			15		[m/s ²]	
Repeatability			4	- 0.1	[mm]	
Suggested working load conditions						
Module	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
ZCG 90	120	400	540	2,000	3,400	1,800

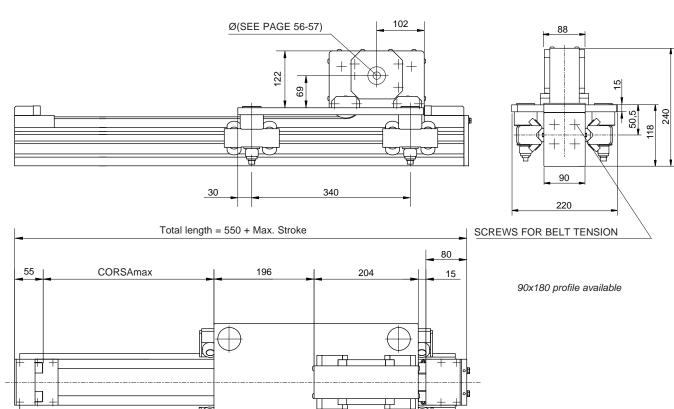
Mz My Fz Fy

Fx= Max belt strength

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

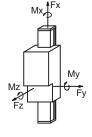
Assembly positions and load direction, see page 10

Data		
Belt	32AT10	
Slide	4 shap. r.	Ø52 - guide Ø16
Load bearing profile	E01-4	(see page 12)
Pulley Ø	70.03	[mm]
Linear displacement per rev.	220	[mm]


Weights		
Inertia of the pulley	0.0013	[kgm ²]
Belt weight	0.19	[kg/m]
Carriage weight	10.5	[kg]
Base module (stroke=0)	M _{base} =16	[kg]
1.000 mm profile	q=8.5	[kg]

To calculate the module weight use the following formula: $M=M_{base}+q$ -stroke_{max}/1,000 Stroke_{max} [mm]

М


ML-48

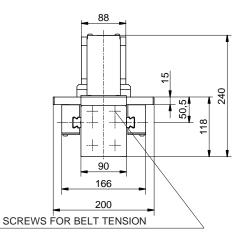
Accessories: see page 11

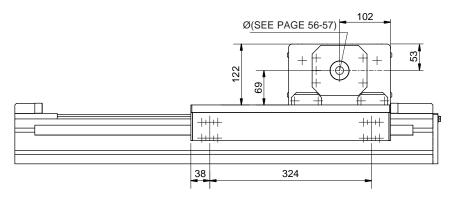
IMPORTANT: when pairing ZC... modules with TC... modules, please check the required Z axis stroke, as this could be limited by the size of the module plates sizes.

Performa	ances	Z	CRR 90			
Max. stroke			5	5,450	[mm]	
Max. spee	d			2	ł	[m/s]
Max. acceleration			25 [n		[m/s ²]	
Repeatability			± 0.1 [m		[mm]	
Suggested working load conditions						
Module	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
ZCRR 90	300	1,000	1,000	2,000	6,700	6,700

Fx= Max belt strength

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept


Assembly positions and load direction, see page 10


Data		
Belt	32 AT 10	0
Slide	4 slides	4 roll. Ø30 [mm]
Load bearing profile	E01-4	(see page 12)
Pulley Ø	70.03	[mm]
Linear displacement per rev.	220	[mm]

Weights		
Inertia of the pulley	0.0013	[kgm ²]
Belt weight	0.21	[kg/m]
Carriage weight	13	[kg]
Base module (stroke=0)	M _{base} = 20	[kg]
1,000 mm profile	q=11.2	[kg]

To calculate the module weight use the following formula: $M=M_{base}+q$ -stroke_{max}/1,000 Stroke_{max} [mm]

Accessories: see page 11

Total length = 550 + Max. Stroke Max. Stroke 55 196 204 15 80 + + + ++ +++ ſŢ Ъ ß Ч L 뷴 +++ + + + + ++

90x180 profile available

IMPORTANT: when pairing ZC... modules with TC... modules, please check the required Z axis stroke, as this could be limited by the size of the module plates sizes.

Performances	ZCL 90	
Max. stroke	5,450	[mm]
Max. speed	4	[m/s]
Max. acceleration	20	[m/s ²]
Repeatability	± 0.1	[mm]

	Mx,	Fx	1
Mz Fz			My C F y

Fx= Max belt strength

ZCL 90	260	730	1,000	2,000	5,500	5,000
The dynam	ic values s	hown do no	t refer to the	max. theor	etical load	capacity.
They include a safety coefficient for automated machinery.						

M_z[Nm]

In case of peak forces acting together please ask the technical dept

Data		
Belt	32AT10	
Slide	4 caged	ball roller slides 20
Load bearing profile	E01-4	(see page 12)
Pulley Ø	70.03	[mm]
Linear displacement per rev.	220	[mm]

Suggested working load conditions

M_v[Nm]

M_x[Nm]

Weights		
Inertia of the pulley	0.0013	[kgm ²]
Belt weight	0.19	[kg/m]
Carriage weight	11.5	[kg]
Base module (stroke=0)	M _{base} =18.5	[kg]
1,000 mm profile	q=11.5	[kg]

To calculate the module weight use the following formula: **M=M_{base}+q•stroke_{max}/1,000** Stroke_{max} [mm]

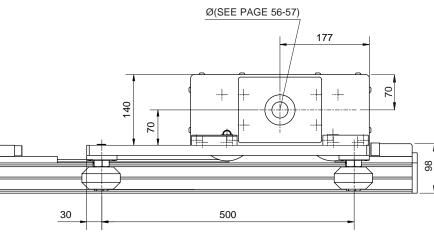
F_x[N]

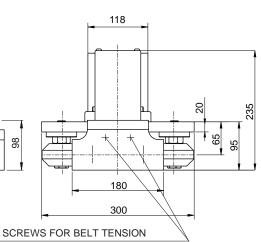
F_v[N]

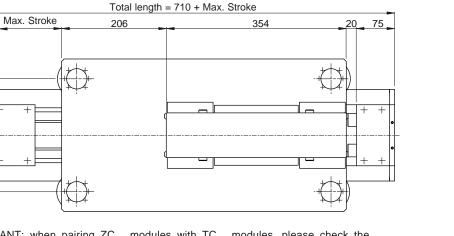
 $F_{z}[N]$

Module

55

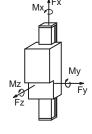

+


222


OMEGA BELT DRIVE DEEP ANODISED GUIDE RAILS AND SHAPED ROLLERS

Registered model

S AND SHAPED ROLLERS Modline Accessories: see page 11



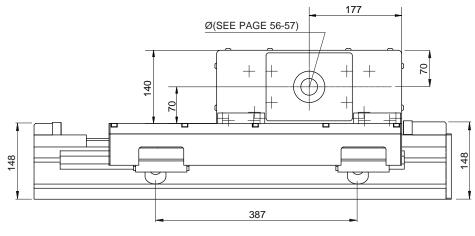
IMPORTANT: when pairing ZC... modules with TC... modules, please check the required Z axis stroke, as this could be limited by the size of the module plates sizes.

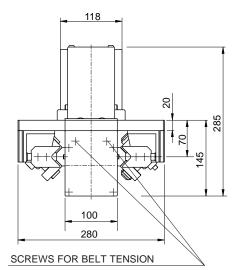
Performances	ZCY 180	
Max. stroke	6,750	[mm]
Max. speed	4	[m/s]
Max. acceleration	15	[m/s ²]
Repeatability	± 0.6	[mm]

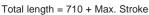
Suggested working load conditions						
Module	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
ZCY 180	220	350	280	3,000	2,400	1,800

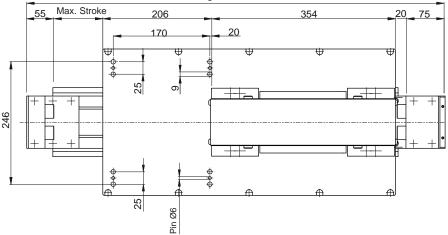
Fx= Max belt strength

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept


Assembly positions and load direction, see page 10


Data		
Belt	50ATL10	
Slide	4 Rollers	Ø 76 [mm]
Load bearing profile	Sys -1G	(see page 15)
Pulley Ø	95.49	[mm]
Linear displacement per rev.	300	[mm]


Weights		
Inertia of the pulley	0.0067	[kgm ²]
Belt weight	0.34	[kg/m]
Carriage weight	23.2	[kg]
Base module (stroke=0)	M _{base} =33.5	[kg]
1,000 mm profile	q=12.5	[kg]


To calculate the module weight use the following formula: $M=M_{base}+q$ -stroke_{max}/1,000 Stroke_{max} [mm]

SUITABLE FOR VERTICAL AND HORIZONTAL ASSEMBLY Accessories: see page 11

M₀ †Fx

IMPORTANT: when pairing ZC... modules with TC... modules, please check the required Z axis stroke, as this could be limited by the size of the module plates sizes.

Performances	ZCRQ 100				
Max. stroke	5,300 [m	m]			
Max. speed	4 [m	n/s]			
Max. acceleration	25 [m/	s²]			
Repeatability	± 0.1 [m	im]			
Suggested working load conditions					
Module M _x [Nm] M _y [Nm] N	[Nm] F _x [N] F _v [N] F _z [N]			

Mz Fz Fz Fz

Fx= Max belt strength

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

1,200

Assembly positions and load direction, see page 10

1,200

Data		
Belt	50 ATL 1	0
Slide	4 slides 2	2 roll. Ø 40[mm]
Load bearing profile	MA 1-5	(see page 13)
Pulley Ø	95.49	[mm]
Linear displacement per rev.	300	[mm]

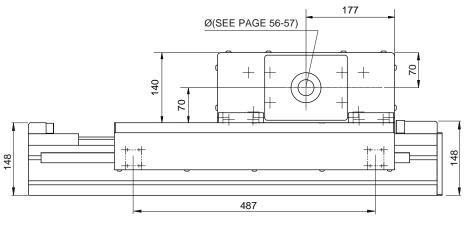
Weights		
Inertia of the pulley	0.0067	[kgm ²]
Belt weight	0.34	[kg/m]
Carriage weight	25	[kg]
Base module (stroke=0)	M _{base} =36.5	[kg]
1,000 mm di profile	q=16.5	[kg]

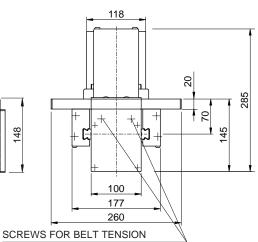
To calculate the module weight use the following formula: M=M_{base}+q•stroke_{max}/1,000 Stroke_{max} [mm]

4,000

7,320

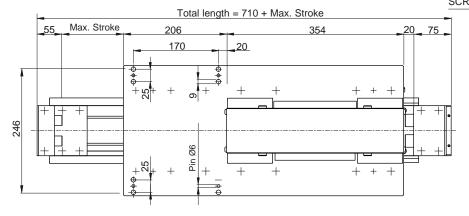
7,320


ZCRQ 100


360

OMEGA BELT DRIVE GUIDE RAILS WITH CAGED BALL ROLLER SLIDES

Modline


SUITABLE FOR VERTICAL AND HORIZONTAL ASSEMBLY Accessories: see page 11

My 5 Fy

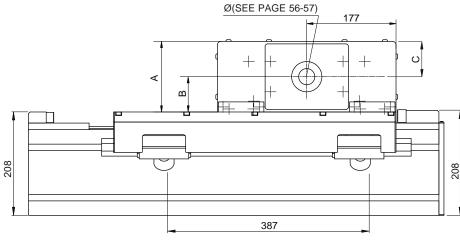
Fx= Max belt strength

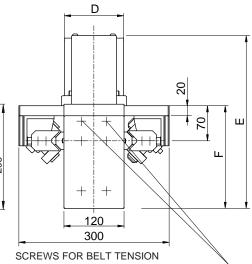
IMPORTANT: when pairing ZC... modules with TC... modules, please check the required Z axis stroke, as this could be limited by the size of the module plates sizes.

Performances	ZCL 100	
Max. stroke	5,300	[mm]
Max. speed	4	[m/s]
Max. acceleration	25	[m/s ²]
Repeatability	± 0.1	[mm]

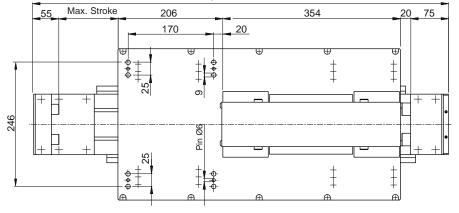
Suggested working load conditions						
Module	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
ZCL 100	480	1,630	1,840	4,000	7,360	8,260

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery.


In case of peak forces acting together please ask the technical dept


Data		
Belt	50 ATL 1	0
Slide	4 caged b	all roller slides 20
Load bearing profile	MA 1-5	(see page 13)
Pulley Ø	95.49	[mm]
Linear displacement per rev.	300	[mm]

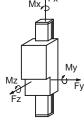
Weights		
Inertia of the pulley	0.0067	[kgm ²]
Belt weight	0.34	[kg/m]
Carriage weight	24.4	[kg]
Base module (stroke=0)	M _{base} =36.6	[kg]
1,000 mm profile	q=15.2	[kg]


To calculate the module weight use the following formula: $M=M_{base}+q$ -stroke_{max}/1,000 Stroke_{max} [mm]

SUITABLE FOR VERTICAL AND HORIZONTAL ASSEMBLY

Total length = 710 + Max. Stroke

IMPORTANT: when pairing ZC... modules with TC... modules, please check the required Z axis stroke, as this could be limited by the size of the module plates sizes.


Performances	ZCRQ 170 - ZCERQ 17		
Max. stroke	5,300	[mm]	
Max. speed	4	[m/s]	
Max. acceleration	25	[m/s ²]	
Repeatability	± 0.1	[mm]	

Suggested working load conditions						
Module	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
ZCRQ 170) 440	1,485	1,485	4,000	7,620	7,620
ZCERQ 17	70 440	1,485	1,485	6,000	7,620	7,620

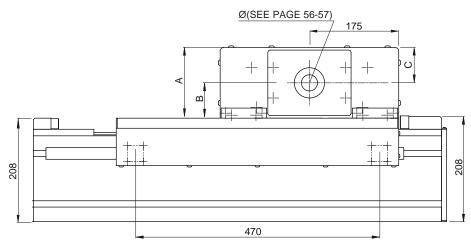
The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

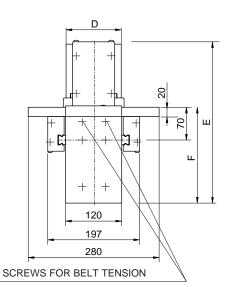
Assembly positions and load direction, see page 10

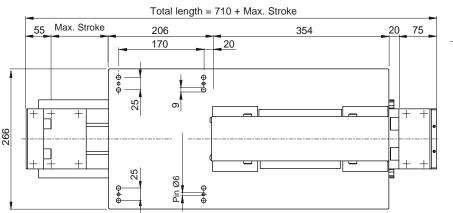
Data	ZCRQ 170	ZCERQ 170
Belt	50 ATL 10	75 ATL 10
Slide	4 slides 2 roll.	Ø 40 [mm]
Load bearing profile	Statyca	(see page 14)
Pulley Ø	95.49	[mm]
Linear displacement per rev	. 300	[mm]

Fx= Max belt strength

Belt	А	В	С	D	E	F
50	140	70	70	118	345	205
75	164	82	82	143	379	215


Weights	ZCRQ 170	ZCERQ 1	70
Inertia of the pulley	0.0067	0.010	[kgm ²]
Belt weight	0.34	0.51	[kg/m]
Carriage weight	27.6	32	[kg]
Base module (stroke=0)	M _{base} =47	M _{base} =51.4	[kg]
1,000 mm profile	q=25	q=25	[kg]


To calculate the module weight use the following formula: $M=M_{base}+q$ -stroke_{max}/1,000 Stroke_{max} [mm]


OMEGA BELT DRIVE GUIDE RAILS WITH CAGED BALL ROLLER SLIDES

Modline

SUITABLE FOR VERTICAL AND HORIZONTAL ASSEMBLY Accessories: see page 11

IMPORTANT: when pairing ZC... modules with TC... modules, please check the required Z axis stroke, as this could be limited by the size of the module plates sizes.

Performances	ZCL 170 - ZCEL 1	70
Max. stroke	5,300	[mm]
Max. speed	4	[m/s]
Max. acceleration	25	[m/s ²]
Repeatability	± 0.1	[mm]

Suggested working load conditions						
Module	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
ZCL 170	810	2,940	4,560	4,000	10,400	12,000
ZCEL 170	810	2,940	4,560	6,000	10,400	12,000

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

Data	ZCL 170	ZCEL 170	
Belt	50 ATL 10	75 ATL 10	
Slide	4 caged ball roller slides 25		
Load bearing profile	Statyca	(see page 14)	
Pulley Ø	95.49	[mm]	
Linear displacement per re	[mm]		

Weights	ZCL 170	ZCEL	170
Inertia of the pulley	0.0067	0.010	[kgm ²]
Belt weight	0.34	0.51	[kg/m]
Carriage weight	27.6	31.6	[kg]
Base module (stroke=0)	M _{base} =46.2	M _{base} =	50.2 [kg]
1,000 mm profile	q=24	q=24	[kg]

В

70

82

С

70

82

D

118

143

Е

345

379

F

205

215

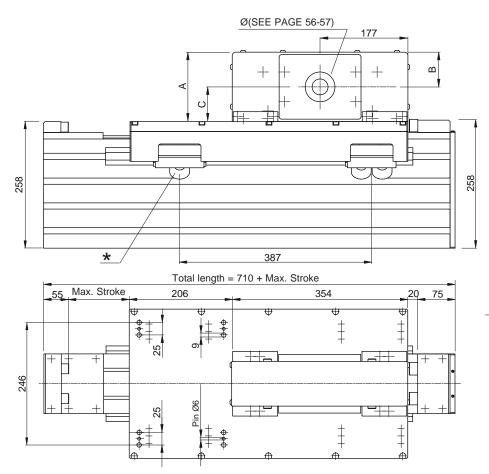
A

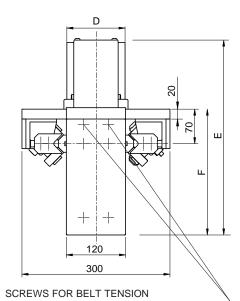
140

164

Belt

50


75


To calculate the module weight use the following formula: M=M_{base}+q•stroke_{max}/1,000 Stroke_{max} [mm]

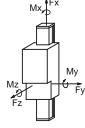
Fx= Max belt strength

My 5 Fy

SUITABLE FOR VERTICAL AND HORIZONTAL ASSEMBLY Accessories: see page 11

IMPORTANT: when pairing ZC... modules with TC... modules, please check the required Z axis stroke, as this could be limited by the size of the module plates sizes.

*****: Please specify the roller orientation according to the barycentre of the applied load. Values corresponding to the most favourable load position.


Performances	ZCRQ 220 - ZCE	RQ 220
Max. stroke	11,300	[mm]
Mas. speed	4	[m/s]
Max. acceleration	25	[m/s ²]
Repeatability	± 0.1	[mm]

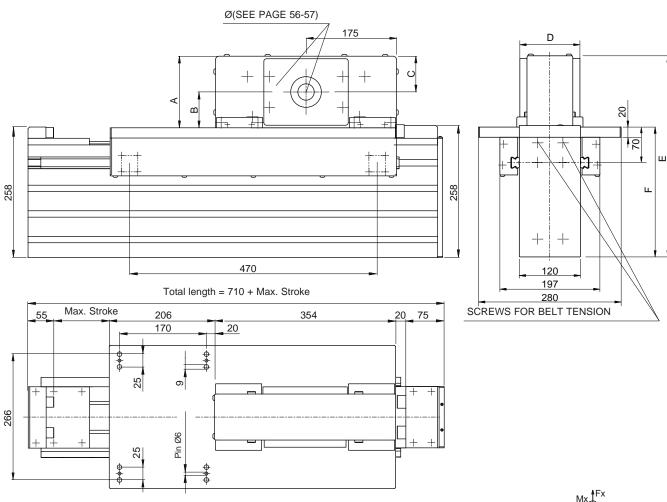
Suggested working load conditions						
Module	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
ZCRQ 220	440	1,900(*)	1,485	4,000	7,620	9,500(*)
ZCERQ 220	440	1,900(*)	1,485	6,000	7,620	9,500(*)

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

Assembly positions and load direction, see page 10

Data	ZCRQ 220	ZCERQ 220
Belt	50 ATL 10	75 ATL 10
Slide	4 slides 3 ro	llers Ø 40 [mm]
Load bearing profile	Logyca	(see page 14)
Pulley Ø	95.49	[mm]
Linear displacement per rev.	300	[mm]

Fx= Max belt strength


Belt	A	В	С	D	E	F
50	140	70	70	118	395	255
75	164	82	82	143	429	265

Weights	ZCRQ 22 0	ZCERQ	220
Inertia of the pulley	0.0067	0.010	[kgm ²]
Belt weight	0.34	0.51	[kg/m]
Carriage weight	26	30	[kg]
Base module (stroke=0)	M _{base} =52	M _{base} =56	[kg]
1,000 mm profile	q=33.6	q=34	[kg]

To calculate the module weight use the following formula: M=M_{base}+q•stroke_{max}/1,000 Stroke_{max} [mm]

OMEGA BELT DRIVE GUIDE RAILS WITH CAGED BALL ROLLER SLIDES

SUITABLE FOR VERTICAL AND HORIZONTAL ASSEMBLY Accessories: see page 11

IMPORTANT: when pairing ZC... modules with TC... modules, please check the required Z axis stroke, as this could be limited by the size of the module plates sizes.

Performances	ZCL 220 - ZCEL 22	20
Max. stroke	11,305	[mm]
Max. speed	4	[m/s]
Max. acceleration	25	[m/s ²]
Repeatability	± 0.1	[mm]

Suggested working load conditions						
Module	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
ZCL 220	810	2,940	4,560	4,000	10,400	12,000
ZCEL 220	810	2,940	4,560	6,000	10,400	12,000

The dynamic values shown do not refer to the max. theoretical load capacity. They include a safety coefficient for automated machinery. In case of peak forces acting together please ask the technical dept

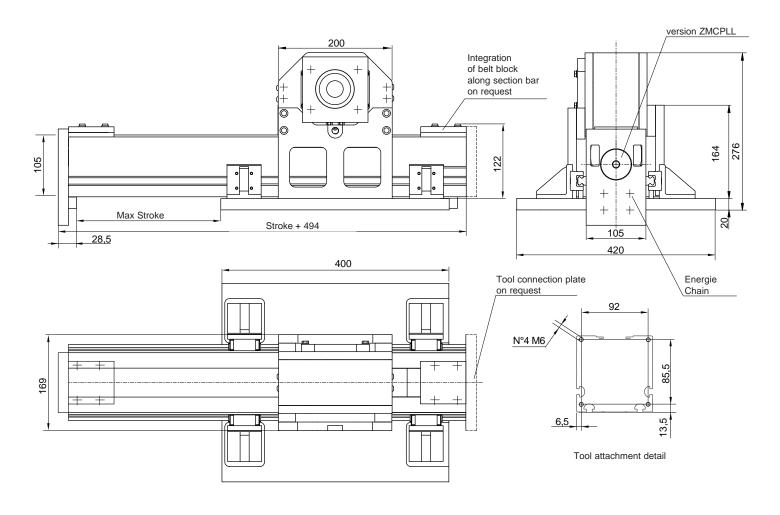
Data	ZCL 220	ZCEL 220	
Belt	50 ATL 10	75 ATL 10	
Slide	4 caged ball roller slides 25		
Load bearing profile	Logyca	(see page 14)	
Pulley Ø	95.49	[mm]	
Linear displacement per rev	. 300	[mm]	

ſ	ļ	1
Mz	F 1	My 6 Fy
Fz		-

Fx= Max belt strength

Belt	A	В	С	D	E	F
50	140	70	70	118	395	255
75	164	82	82	143	429	265

Weights	ZCL 220	ZCEL 22	20
Inertia of the pulley	0.0067	0.010	[kgm ²]
Belt weight	0.34	0.51	[kg/m]
Carriage weight	27.5	37.5	[kg]
Base module (stroke=0)	M _{base} =53	M _{base} =57	′ [kg]
1,000 mm profile	q=32.3	q=32.7	[kg]

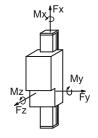

To calculate the module weight use the following formula: M=Mbase+q•strokemax/1,000 Strokemax [mm]

ZMCPLL 105 - ZMCLL 105

OMEGA BELT DRIVE SUITABLE FOR VERTICAL ASSEMBLY

Patent pending

LOAD COMPENSATION WITH INTEGRATED PNEUMATIC CYLINDER

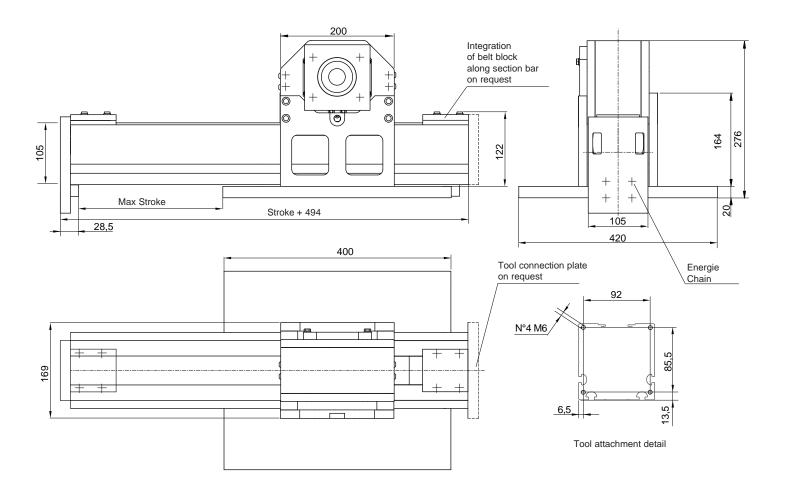


Performances	ZMCPLL	. 105
Integrated pneumatic cylinder	Ø 50	[mm]
Maximum cylinder stroke	2000	[mm]
Max Speed	3	[m/s]
Maximum acceleration	25	[m/s ²]
Repositioning precision	± 0,1	[mm]

Suggeste	d working	load cond	itions			
Module	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
ZMCPLL10	5 260	700	700	2.500	4.500	4.500

The dynamic values indicated do not correspond to maximum theoretical load capacities. They already take safety factors into account which are suitable for machinery in the automation sector. In the event of combined stress consult the technical support service.

Constructive data	
Belt	50 AT 10
Slide	4 ball slides size 15 [mm]
Profile	M105
Pulley Ø	92,3 [mm]
Linear displacement per revolution	290 [mm]


Fx= Max belt strenght

Weights		
Inertia of the pulley	-	[kgm ²]
Belt weight	0,30	[kg/m]
Carriage weight	29	[kg]
Base Module (stroke=0)	M _{base} = 37	[kg]
1.000 profile	q=15	[kg]

To calculate the module weight use the following formula: M=Mbase+q•Strokemax/1.000 Strokemax [mm]

Modline

Patent pending

Performances	ZMCH 105	
Max Speed	3	[m/s]
Max Acceleration	25	[m/s ²]
Repositioning accuracy	± 0,1	[mm]

Suggested working load conditions						
Module	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _x [N]	F _y [N]	F _z [N]
ZMCH105	260	700	700	2.500	4.500	4.500

The dynamic values indicated do not correspond to maximum theoretical load capacities. They already take safety factors into account which are suitable for machinery in the automation sector. In the event of combined stress consult the technical support service.

Constructive data		
Belt	50 AT 10	
Sliding	4 ball slides size 15	[mm]
Profile	M105	
Pulley Ø	92,3	[mm]
Linear displacement per revolution	290	[mm]

-	[kgm ²]
0,30	[kg/m]
29	[kg]
M _{base} = 37	[kg]
	29

M

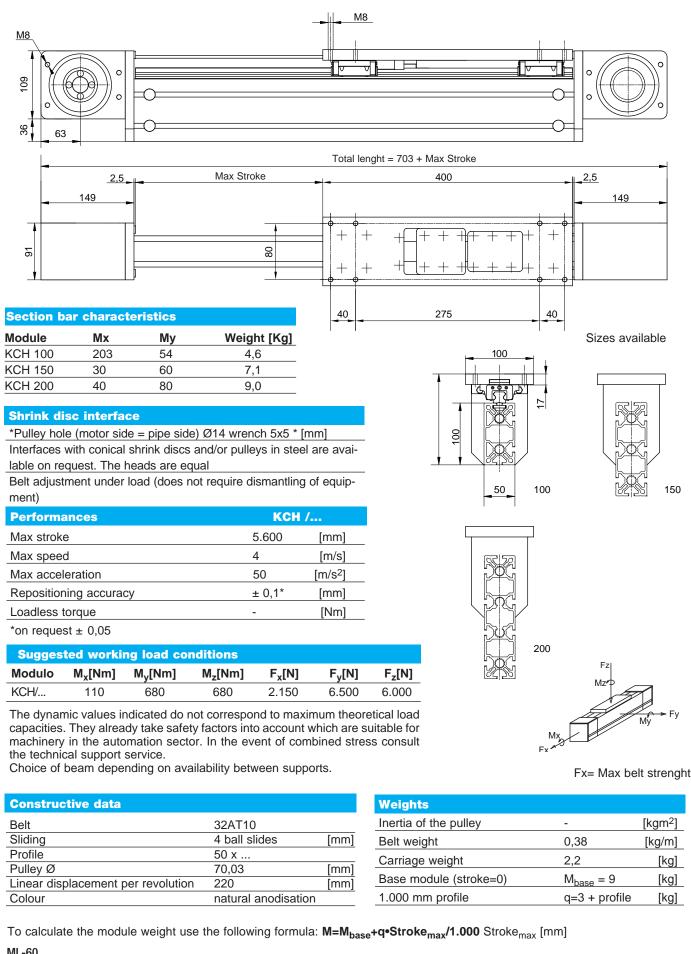
My

Fx= Max belt strenght

q=15

Fy

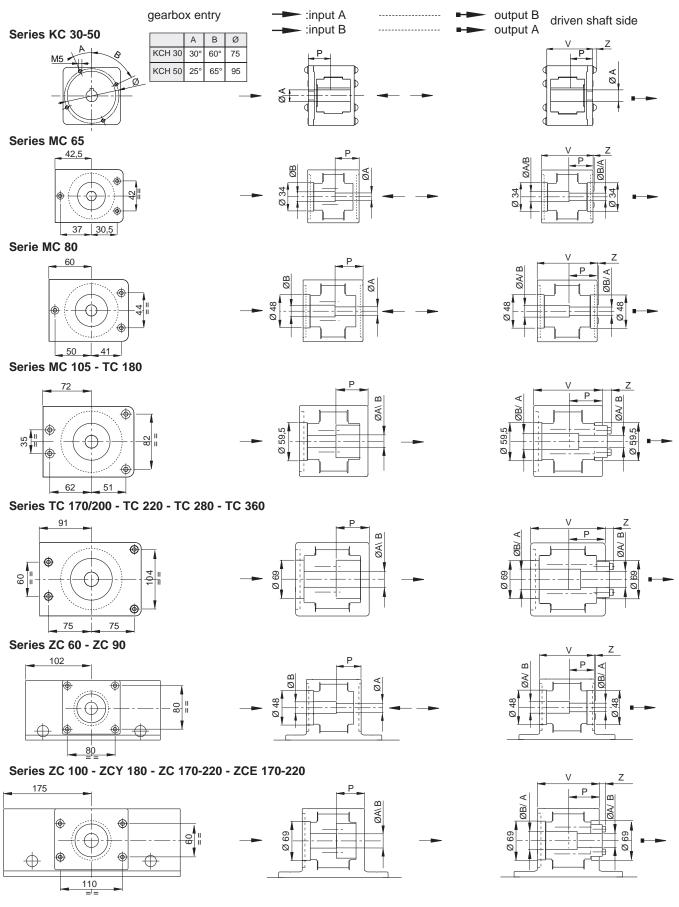
To calculate the module weight use the following formula: M=Mbase+q•Strokemax/1.000 Strokemax [mm]


1.000 mm profile

[kg]

SERIE K MODULES GEAR MOTOR ASSEMBLY POSSIBLE FROM EACH SIDE

KCH 100/150/200


GEAR MOTOR ASSEMBLY POSSIBLE FROM EACH SIDE

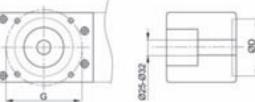
ML-60

Registered model

The motor connection is pre-engineered directly on the drive head by means of a removable flange, but integrated in the actual head. The drive shaft and/or the driven shaft are locked into the pulley by shrink-discs. (The gearbox can be easily removed without disassembling the head). Please see page 10 to identify the desired motor side (left or right); page 56 for shrink-disc and flange diameter and page 11 for the order code setting. Non-standard diameters are available upon request.

Module	A Ø [mm]	B Ø [mm]	V [mm]	P [mm]	Z [mm]
KCH30 - KCH50	12H7		40	34	4
	14H7		68	34	4
MC 65 - TC 100	12H7		67	34	0
		14H7	67	34	0
	16H7		80	52.4	1
MC 80		19H7	80	49.4	1
		20H7	80	49.4	1
MC 105 - TC 180	19H7		105	49	13.5
		25H7	105	51	8
TC 170 - TC 200	25H7		117	54.5	12.5
		32H7	117	57.5	7
	25H7		142	79.5	12.5
TC 220 - TC 280 - TC 360		32H7	142	82.5	7
		40H7	142	82.5	7
70.00.70.00	16H7		100	62.4	0
ZC 60 - ZC 90		19H7	100	62.4	0
		20H7	100	62.4	0
ZC 100 - ZCY 180	25H7		108	48.5	11.5
20100 201 100		32H7	108	52.5	6
ZC 170 - 220	25H7		108	48.5	11.5
		32H7	108	52.5	6
		40H7	108	52.5	6
	25H7		143	65	12
ZCE 170 - 220		32H7	143	95	12
		40H7	143	95	12

Phosphating of drive and driven pulleys.


Adapter Flanges

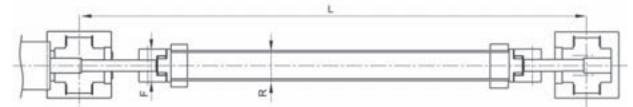
Standard machining for planetary gearboxes - MP or MPTR, LP, EP series. Machining is performed directly on the removable flange in a symmetric position, suitable for both sides.

Ex. module: MC 105

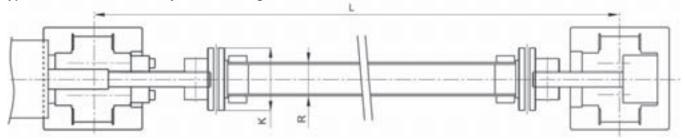
Drilled flange: code E Blind flange: code X

-				
Linear module	Gearbox code			Size
Series		D	Ø	G
MC 65	LP 050	35	12	44
KC 30-50	EP55	32	12	40
	MP053	32	12	40
MC 80-105 - ZC 60	MPTR080	50	19	65
	LP070	52	16	62
ZC 90	EP75 AA	40	14	52
MC 105 - TC-ZC 100	MPTR105	70	25	85
MC 105 - TC 180	LP090	68	22	80
	EP90 TT	50	19	65
	MPTR130	80	32	110
TC 170-360	LP120	90	32	108
ZC 170-220	EP120 TT	70	25	85

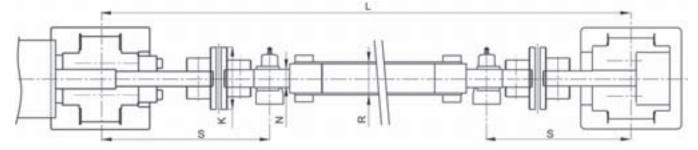
We can supply standard hollow shaft connections, according to your application requirements.


Please specify the type of module to be connected, together with speed, "L" centre-distance, working and peak torques, accuracy.

Some simplified solutions with solid shafts are available for low-speed applications and with "L" of up to 2,000 mm. If high-speeds and/or "L" of more than 2,000 mm are needed, please ask our technical dept. for the shaft scaling.


The complete kit includes all the components needed to make the connection: tube, shrink-discs, shaft crop ends for connection between pulleys and shrink-discs, any supports. Tube material: 6060 aluminium alloy

The customer is responsible for ensuring compliance with accident prevention rules in relation to all rotating parts.


Type 1 - Elastic joint connecting shafts, normally suitable for low-speeds

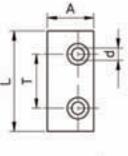
Type 2 - Stainless steel blade joint connecting shafts, suitable for backlash-free transmissions

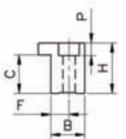
Type 3 - Stainless steel blade joint connecting shafts and pedestal bearings, suitable for backlash-free transmissions

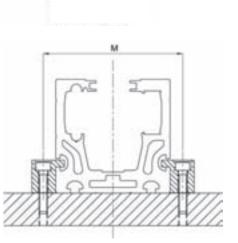
Critical Speed

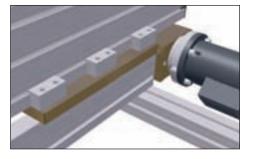
R(*) K	F	Ν	S	Lmax	MTwork [Nm]	Mom.Inertia. [Kgm ²]	Type 1: Code/L	Type 2: Code/L	Type 3: Code/L
40	67	55	20	200	6,200	20	0.0028 + 0.46 × L. ×10 ⁻⁶	436.0948	436.0957	436.0965
50	81	65	25	235	6,300	35	0.0092 + 0.66 x L. x10 ⁻⁶	436.0949	436.0958	436.0966
50	93	80	25	235	6,300	70	0.0161 + 1.34 x L. x10 ⁻⁶	436.0951	436.0971	436.0974
70	104	95	25	235	6,400	100	0.0293 + 2.93 x L. x10 ⁻⁶	436.0952	436.0960	436.0968
80	126	120	25	250	6,400	190	0.0793 + 4.5 x L. x10 ⁻⁶	436.0955	436.0963	436.0984
90	143	-	-	-	6,500	300	0.1456 + 6.53 x L. x10 ⁻⁶	-	436.0986	436.0987
110	185	-	-	-	6,000	420	0.3499 + 12.3 x L. ×10 ⁻⁶	436.0144	436.0145	436.0146

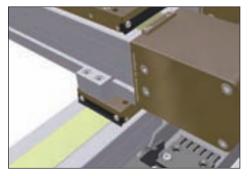
The S value can vary by ± 20%, Lmax by ± 3%, according to the chosen type. Please contact our technical dept.

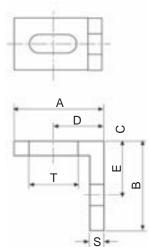

Spare rollers with pins


Make sure that all the components are locked in place with the appropriate screws. The recommended tightening torque for pin locking screws and nuts is 50 Nm.




Max. loa	d factors fo	or hardene	ed and temper	ed guides			
Roller	Cw [N]	C0w[N]	Fr amm.[N]	V max.			
Ø30	5,000	3,000	1,350	7 m/s			
Ø40	9,800	6,200	2,600	7 m/s			
Ø52	15,800	10,500	4,400	6 m/s			
Ø62	21,100	14,500	5,600	5 m/s			
Max. load factors for hardened guides							
Roller	Cw [N]	C0w[N]	Fr amm.[N]	V max.			
Ø30	5,000	3,000	400	2 m/s			
Ø40	9,800	6,200	800	13 m/s			
Ø52	15,800	10,500	1,400	2.5 m/s			
Ø62	21,100	14,500	1,900	2 m/s			
Spare ro	ller with pir	า	Weight [kg]	Code			
Ø30 Con	centric		0.02	406.0056			
Ø40 Con	centric		0.22	205.0464			
Ø40 Eccentric (± 0.75 mm)			0.25	205.0463			
Ø52 Concentric			0.4	205.0163			
Ø62 Con	centric		0.55	205.0165			

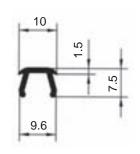

Mounting brackets



Material: aluminium alloy 6082

Module												
type	bxh	Α	L	т	d	н	Р	С	F	В	Μ	Code
KC 30	30x30	25	25	-	6.7	17	6.8	10.6	10	18	40	415.1105
MC 65	67x65	25	50	25	6.7	20	6.8	13.5	10	18	87	415.0388
MC 80	80x80	25	50	25	6.7	25	6.8	18.6	10	18	100	415.0760
KC 50, TC	-ZC 100	25	50	25	6.7	27	6.8	20.6	10	18	120	415.0764
MC 105	105x105	30	50	25	9	30	9.5	23.6	12	22	129	415.0761
TC 180	180x90	30	50	25	9	25	9.5	18	12	25	204	415.0773
TC 170	120x170										198	
TC 200	120x200	30	90	50	11	40	11	28.3	14	25	228	415.0762
TC 220	120x220										248	
TC 280	170x280	30	90	50	11	20	11	11.3	14	25	308	415.0763
TC 280Ve	t. 280x170	30	90	50	11	20	11	13.5	14	25	198	915.1174

Assembly brackets


Material: natural, anodised anticorodal alloy.

Thr	ead							Code	
А	В	С	D	Е	S	Txt	ØM	Ø	М
45	45	20	25	25	5	20x6.5	6	A30-76	A 30-86
35	25	20	19	15	5	20x6.5	4	A30-54	A 30-64
35	25	20	19	15	5	20x6.5	5	A30-55	A 30-65
35	25	20	19	15	5	20x65	6	A30-56	A 30-66
25	25	15	14	15	4	13.5x5.5	3	B30-53	B 30-63
25	25	14	14	15	4	13.5x5.5	4	B30-54	B 30-64
25	25	15	14	15	4	13.5x5.5	5	B30-55	B 30-65
25	25	15	14	15	4	13.5x5.5	6	B30-56	B 30-66
Sui	Suitable for all the modules								

the modules

Filler strips

PVC filler strips, grey or black L=5,000 - 6,000 mm for any longitudinal 8 mm slot

Suitable for series: KC 50, MC 80-105, ZC 60-90-100-170, TC 100-180

Color	Code A /Length
grey	Cod.A39-25/5000
black	Cod.A39-26/5000
orange (on request)	Cod.A39-25/6000 A

T Bolts

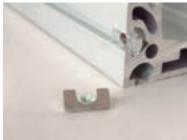
Assembly in longitudinal slots. Material: galvanised steel. Can be inserted through the profile slot.

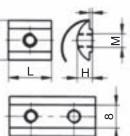
Code A: KC 50, MC 80-105, ZC 60-90-100-170, TC 100-180 Code B: KC 30, MC 65

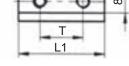
MxL	Code B	M x L	Code A
M 6x15	B35-15	M8x20	A35-20
M 6x20	B35-20	M8x25	A35-20
M 6x30	B35-30	M8x30	A35-30
M 6x40	B35-40	M8x40	A35-40
		M8x60	A35-60

Threaded inserts (suitable for the ZC series)

Suitable for ZC series


Μ


Material: galvanised steel


Ext. thread	Int	. а	L	Key	Code
M16	Μ	6	25	6	A33-26
M16	М	8	25	8	A33-28
M16	Μ	10	25	10	A33-20
M20	Μ	6	25	6	207.1892
M20	Μ	8	25	8	207.1893
M20	Μ	10	25	10	207.1894
M20	М	12	25	12	207.2288

Front insertable nuts and plates

Spring nut

Simple nut

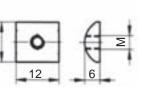


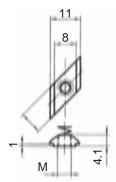
Plate suitable for every kind of module (8 mm slot).

Material: nut in galvanised steel welded to the harmonic steel spring. The B series can also be inserted through the slot.

Code A: KC 50, MC 80-105, ZC 60-90-100-170, TC 100-180 Code B: KC 30, MC 65

Single plate	Code A	Code B
M5	A32-55	B32-55
M6	A32-65	B32-65
M8	A32-85	B32-85
Double plate	Code A	Code B
M6	A32-67	B32-67

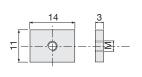
Size					
Base Module	D	н	L	L1	т
MC 105, ZC 100	14	7.8	20	40	30
MC 80	11	4.1	20	40	30


Material: galvanised steel. Insert through the end of the profile. Suitable for series:

KC 50, MC 80-105, ZC 60-90-100-170, TC 100-180

Code
209.2431
209.2432
209.2433

Front insertable spring nut


Material: galvanised steel, harmonic steel spring. To be inserted through the slot. Suitable for series:

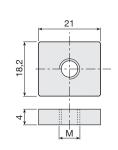
KC 30, MC 65

Thread	Code B
M3	BD31-30
M4	BD31-40
М5	BD31-50
M6	BD31-60

Simple Nut

Materiale: galvanised steel.

To be inserted through the slot. Suitable for series:

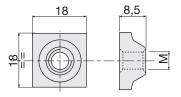

KC 30, MC 65

Code B	Thread
B32.40	M4
B32.50	M5
B32.60	M6

ML-66

Flat nut

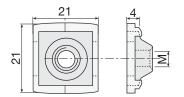
Material: galvanised steel. Insert through the end of the profile. Retaining spring upon request.


TC-ZC 100, TC 180, ZCY 180

Thread	Code
M4	A32-40
M5	A32-50
M6	A32-60
M8	A32-80
Molla	211.1061

Semi-rounded threaded inserts with spring

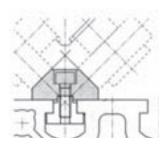
Threaded plate for base profile 45, 50 and 60. Material: galvanised steel. Important: to be inserted through the longitudinal slots before assembling.

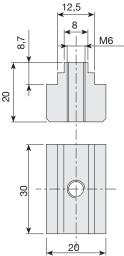

Suitable for series: TC-ZC 100, ZCY 180, TC 170-180-200-220-360, ZC 170-220

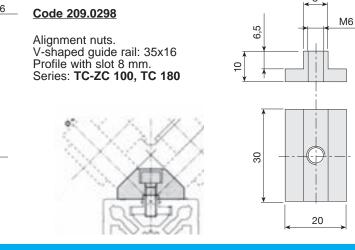
Thread	Code 18x18	Code 20x20
M4	209.0031	209.0023
M5	209.0032	209.0019
M6	209.0033	209.1202
M8	209.0034	209.0467

Plastic compound spring for vertical positioning of insert.

Spring	Code
Suitable for all inserts 18x18	101.0732

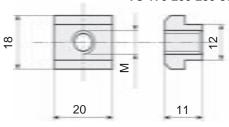

Alignment nuts


Nuts for steel guide rails

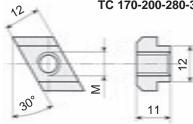

Material: galvanised steel.

Code 209.1855

Alignment nuts. V-shaped guide rail: 35x16 Profile with slot. 12.5 mm. Series: **TC 170-200-220-280-360 e ZC 170-220**



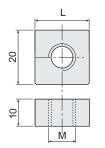
Alignment nut for slot 12.5 mm

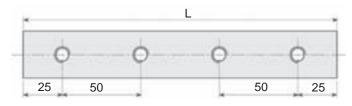


Material: galvanised steel. Suitable for series: TC 170-200-280-360 and ZC 170-220

Thread	Code
M5	215.1768
M6	215.1769
M8	215.1770
M10	215.2124

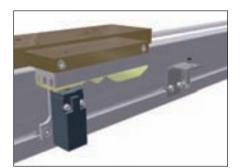
Alignment nut for slot 12.5 mm front insertable



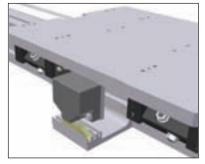

Material: galvanised steel. Suitable for series: TC 170-200-280-360 and ZC 170-220

Thread	Code
M5	215.1771
M6	215.1772
M8	215.1773
M10	215.2125

Threaded nuts and plates


M12 (CH19) hexagonal-head screws can be used as stud bolts in profiles with 12.5 mm slots.

Material: galvanised steel. Suitable for series: TC 170-200-220-280-360 and ZC 170-220


Thread	nread Type L				
M10	1-hole plate	40	215.0477		
M12	1-hole plate	40	209.1281		
M10	1-hole plate	20	209.1277		
M10	2-holes plate*	80	209.1776		
M10	3-holes plate*	150	209.1777		
M10	4-holes plate*	200	209.1778		
M10	5-holes plate*	250	209.1779		
M10	6-holes plate*	300	209.1780		
M10	7-holes plate*	350	209.1781		

* Hole centre-distance: 50 mm.

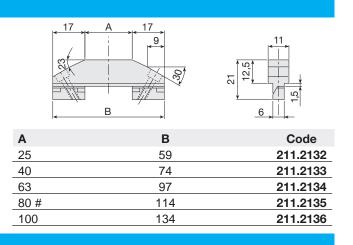
Modline

Mechanical and inductive micro-switches on MC series.

Multi-channel micro-switch on TC series.

Micro-switches and brackets are supplied according to the needs of the application. We can also supply cams and cam-holders for mechanical micro-switches in accordance with DIN standards.

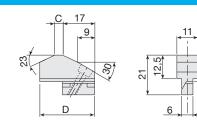
Cams and cam-holders for micro-switches



Mechanical and inductive micro-switches on MC series.

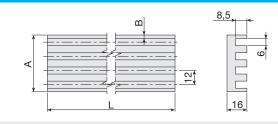
Long cams

Cams in accordance with DIN 69639 except when marked "#". Material: steel with hardened and ground surface.



Short cams

Cams in accordance with DIN 69639 Material: steel with hardened and ground surface.

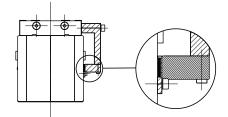

С	D	Code
0	25	211.2128
4	29	211.2129
10	35	211.2130
16	41	211.2131

Ŋ

Cam-holder guides

Cams in accordance with DIN 6963 Materiale: lega di alluminio 6060 anodizzato

n°	В	Α	L	Code
3	3	36	2,000	202.2138
4	5.5	53	3,000	202.2139
6	5.5	77	3,000	202.2140
8	5.5	101	3,000	202.2141


Special Options

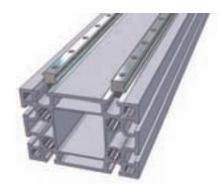
Reader system with magnetic scale and sensor

The magnetic scale is applied to the body of the module using a supporting and protective profile. Precision of between \pm 0.015 and \pm 0.05 mm

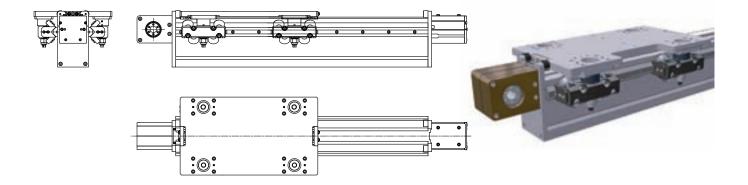
Max speed = $4 \div 10$ m/s (depending on the type)

Twin drive head

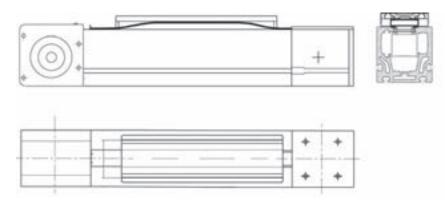
Version with drive head on both sides.



Precision profile machining

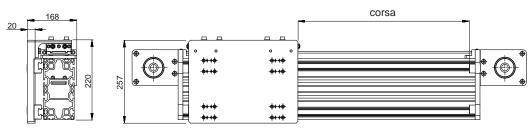

Profiles can be machined along their entire length, to provide the required precision or according to application specifications. **Example**: for linear motors.

Rotatable load-bearing profile to fully exploit the moment of inertia


The load-bearing profile can be rotated in order to change the overall dimensions, or to fully exploit the moment of inertia.

Belt protection for series MC 65 - 80 - 105

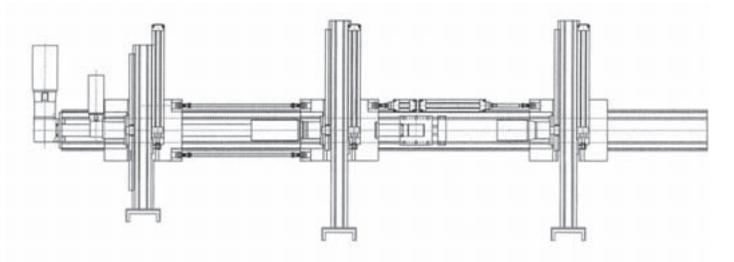
Guard system consisting of a magnetic stainless steel foil to protect the belt from dust and external agents (code: LI), which is attached to the profile.


NB: Avoid the use of a metallic band in the presence of ferrous filings. Optional.



TC series of linear modules with pulley axis turned at 90°

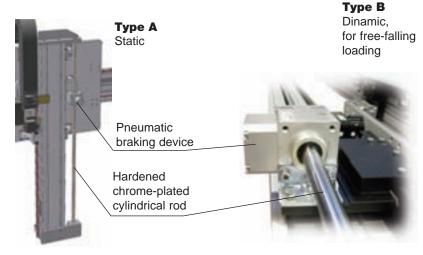
In some applications which involve the use of high speeds and accelerations, the assembly of linear units having a vertical pulley axis and a centre-distance of more than 4 m may force the toothed belt and result in the need for premature maintenance. In this case we suggest you mount the pulleys and the belt in a horizontal position. The modification as shown in the figure below can be requested for the MODLINE TCS series. Optional.



TC multi-carriage linear modules with intermediate belt transmission

Example of horizontal transfer with integrated belt and transmission pulley support, in an intermediate position, all incorporated inside the profile. (Registered design)

Special feature: note the compensating cylinders and the horizontal cylinder for the different travel of carriage no. 3.



Anti-drop safety device with pneumatic brake system

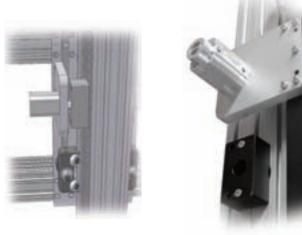
Ant-droop safety devices, available in a range of sizes, are supplied according to the type of application. For instance, they can act as a mechanical stop to block the free-falling load at any stroke point, or as a lock in static conditions at any position. Two-way blocking occurs following an unexpected pressure drop. A mechanical safety release system is available upon request (patented). Catalogue available upon request. The kit includes: braking device and rod with relative supports, micro-switch and solenoid valve.

Operating pressure 3-6 Bar. With no pressure = locked.

1- Static rod blocking device

Тур	e Code	Rod blocking force [N]	Stroke [mm]
Α	236.0018	/ 1,200	/
A	236.0018	/ 1,900	/
Α	236.0018	/ 3,000	/
A	236.0018	/ 5,400	/
A	236.0018	/ 7,500	/
Α	236.0018	/ 12,000	/

Emergency brake for free-falling load.


1- Dynamic rod blocking device

Туре	Code	Rod blocking force [N]	Stroke [mm]
В	236.0019	/ 3,000	/
В	236.0019	/ 5,400	/
в	236.0019	/ 7,500	/
В	236.0019	/ 12,000	/

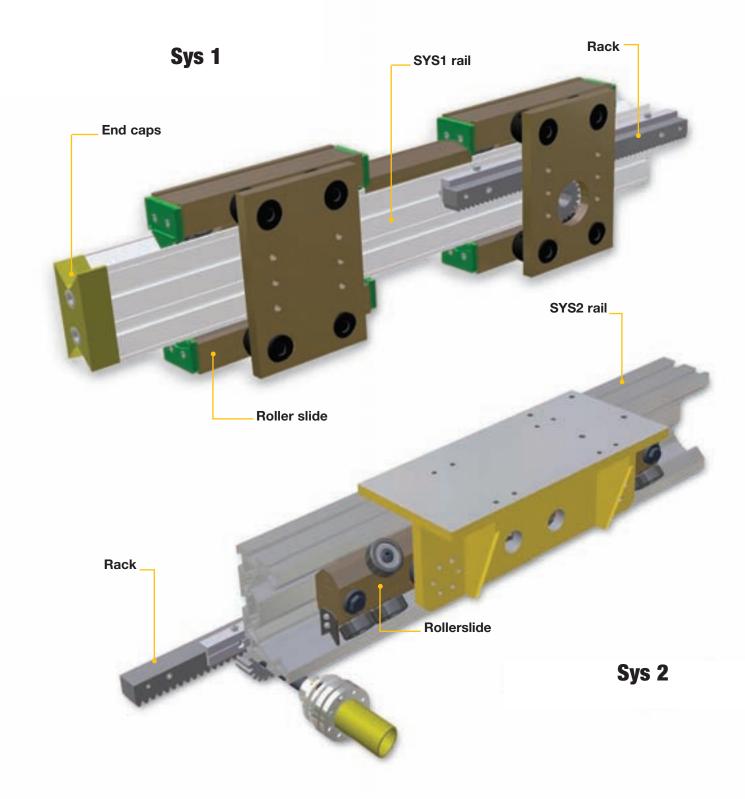
Safety lock-pin (stopper cylinders)


Lock-pin devices, available in two sizes, suitable to block the vertical axes in the safety position during horizontal movements. (e.g.: maintenance). The safety lock-pins are provided with a through rod.

Select the size according to the load. The kit includes: drilled plate for rod, stopper cylinder, micro-switch. Max. operating pressure: 10 bar.

1- Lock-pin device

ØD rod	stroke	С	Е	F	G	Kit Code
20	20	60.5	50	38	16	236.0021
32	30	-	-	-	-	236.0022


2- Accessory: drilled plate for rod

ØD rod	Base	Length	Thickness	
20	60	100	39	
32	60	100	39	

Index										Modlin	1e
Code	page	Code	page	Code	page	Code	page	Code	page	Code	page
1010732	67	2112129	69	4360952	63	A35-30	65	MA1-5	13	TCS 200	37
2020342	15	2112130	69	4360955	63	A35-40	65	MCH 10	5 21	TCS 220	39
2021146	14	2112131	69	4360957	63	A35-60	65	MCH 65	17	TCS 280	41
2021147	15	2112132	69	4360958	63	A39-25/50	00 65	MCH 80	19	TCS 360	43
2021753	14	2112133	69	4360960	63	A39-25/600	0A 65	MCHH 1	05 22	TVH 180	27
2022138	69	2112134	69	4360963	63	A39-26/50	00 65	MCR 10	5 20	TVS 170	28
2022139	69	2112135	69	4360965	63	B30-53	65	MCR 65	16	TVS 220	29
2022140	69	2112136	69	4360966	63	B30-54	65	MCR 80	18	ZCEL 17	0 55
2022141	69	2150477	68	4360968	63	B30-55	65	MCS 10	5 21	ZCEL 22	0 57
2022184	14	2151768	68	4360971	63	B30-56	65	MCS 65	17	ZCERQ 1	70 54
2050163	64	2151769	68	4360974	63	B30-63	65	MCS 80	19	ZCERQ 2	20 56
2050165	64	2151770	68	4360984	63	B30-64	65	MTR 105	5 24	ZCG 60	46
2050463	64	2151771	68	4360986	63	B30-65	65	MTR 80	23	ZCG 90	48
2050464	64	2151772	68	4360987	63	B30-66	65	MVH 10	5 25	ZCL 100	53
2071892	65	2151773	68	7400568	13	B32-40	66	MVHH 1	05 26	ZCL 170	55
2071893	65	2152124	68	9151174	64	B32-50	66	MVR 10	5 24	ZCL 220	57
2071894	65	2152125	68	A30-54	65	B32-55	66	MVR 80	23	ZCL 60	47
2072288	65	2360018	72	A30-55	65	B32-60	66	MVS 105	5 25	ZCL 90	50
2090019	67	2360019	72	A30-56	65	B32-65	66	TCG 100) 30	ZCRQ 10	00 52
2090023	67	2360021	72	A30-64	65	B32-67	66	TCG 180) 32	ZCRQ 17	70 54
2090298	68	2360022	72	A30-65	65	B32-85	66	TCH 100	31	ZCRQ 22	20 56
2090467	67	3020001	15	A30-66	65	B35-15	65	TCH 170	35	ZCRR 90) 49
2091202	67	4060056	64	A30-76	65	B35-20	65	TCH 180	33	ZCY 180	51
2091277	68	4150388	64	A30-86	65	B35-30	65	TCH 200	37	ZMCPLL ²	105 58
2091281	68	4150760	64	A32-40	67	B35-40	65	TCH 220	39	ZMCLL 10)5 58
2091776	68	4150761	64	A32-50	67	BD31-30	66	TCH 280	41	ZMCH 10	5 59
2091777	68	4150762	64	A32-55	66	BD31-40	66	TCH 360	43	KCH 100	60
2091778	68	4150763	64	A32-60	67	BD31-50	66	TCRQ 1	70 34	KCH 150	60
2091779	68	4150764	64	A32-65	66	BD31-60	66	TCRQ 1	30 32	KCH 200	60
2091780	68	4150773	64	A32-67	66	E01-4	12	TCRQ 2	00 36	TECRQ 1	70 44
2091781	68	4151105	64	A32-80	67	E01-5	13	TCRQ 2	20 38	TECH 170) 44
2091855	68	4360144	63	A32-85	66	F01-1	12	TCRQ 2	30 40	TECRR 18	30 45
2092431	66	4360145	63	A33-20	65	M 65X67	12	TCRP 28	30 40	TECH 180) 45
2092432	66	4360146	63	A33-26	65	M 80X80	12	TCRP 36	60 42		
2092433	66	4360948	63	A33-28	65	M 105X10	05 12	TCS 100	31		
2111061	67	4360949	63	A35-20	65	MA1-2	13	TCS 170	35		
2112128	69	4360951	63	A35-25	65	MA1-4	13	TCS 180	33		
		I		I				I			

The **Sys** linear transfer system consists of higher mechanical performances aluminium alloy rail with deepanodising surface and light alloy extruded roller slides.

Innovative features are:

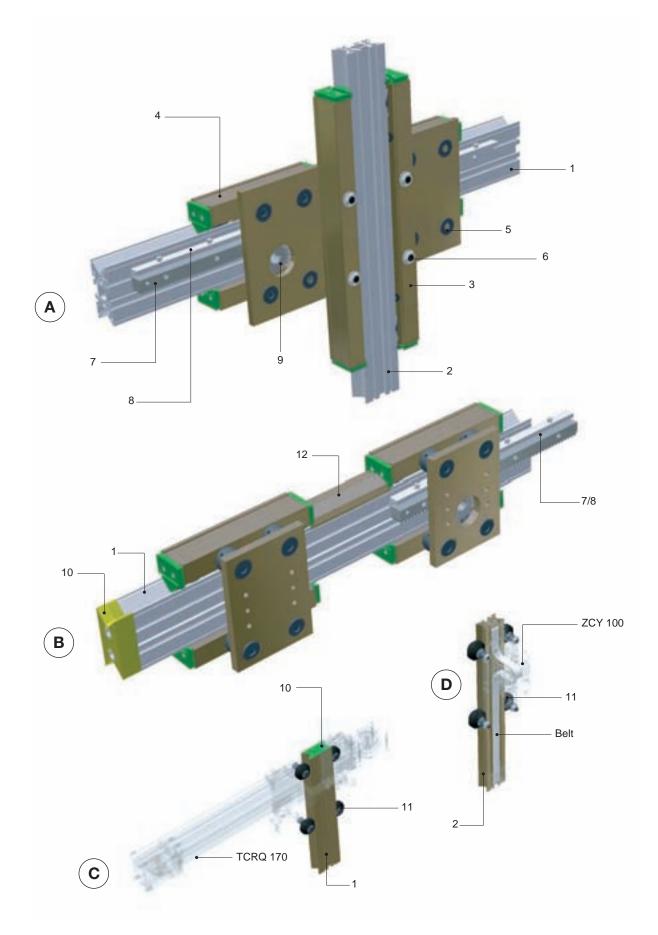
- extremely small section sizes
- modularity of the system achieved by structural
- profiles and wide range of accessories
- special profile section to protect sliding tracks and roller
- slow friction lame contact roller
- shigh resistance polyamide roller surface
- customizable solutions for the applied loads

Applications such as handling units, Cartesian robots and **lift and shift** systems are implemented in the following sectors: wood working industry, **body in white welding** lines, white goods industry, **piping and sheet metal** working industry.

Index

SYS1

Assembly solutions	2
Scaling request form	4
Overview	5
Assembly specifications	6
Rail description	7
Rail specifications	8
Single track guide	9
Roller slide description	9
Roller slide size	10
Spare part pin with roller	12
Assembly pins	12
Connecting plates	14
Order code table	16
Profiled Rollers	17
Angular support	18
Roller guard	19
Rail connecting plates	19
Accessory fixing plate	20
Rack fixing plates	20
Racks	21
Pinion Gears	21
Slots details	22
Dovetail inserts	22
Threaded inserts - Type A slots	23
Threaded inserts - Type B-C slots	24
Threaded Inserts	25
Assembly brackets	26
Filler strips	27
Guide end parts	28
End caps	28
Rail Extension Kits	28
PVS [®] connectors	29
Guard profiles	30
Belt assembly	30
Machining codes	31


SYS2

Assembly solutions	32
Special applications	33
Overview	33
Roller slide description	34
Assembly specifications	34
Rail specifications	35
Roller slide size	36
Rail connecting plates	38
Roller slide guard rail	38
Accessory fixing plate	38
Tool fixing bracket	39
Ø78 V-shaped rollers	39
Code parts index	40

03-2015 edition This publication cancels any previous one.

Due to the constant progress of our reserve the right to modify drawings or features without notice. No part of this catalogue may be reproduced without written permission express from the copyright owner. All rights reserved. This catalogue has been accurately checked before publishing. We disclaim all responsibility in case of errors and omissions.

Assembly solutions

"A" Assembly (fixed rail / moving carriage):

This example represents a typical 2-axis system completely manufactured with SYS1 products.

The horizontal traverse is made of a pinion/rack drive, handling a carriage composed of a plate and 4 roller slides. On the plate there is the pinion through hole.

For this kind of system we can supply motor adapter plate and shafts.

The vertical axis is pneumatically operated (not shown). On demand we can supply cylinder supports as well.

"B" Assembly (moving rail / fixed carriage):

This example represents a system operated by a pinion/ rack drive.

The rail runs on roller slides, which can be mounted on plates or fixed structural works.

Legend:

- 1 SYS1-M rail (see page 8)
- 2 SYS1-P rail (see page 8)
- 3 Roller slides L=600mm (see page 11)
- 4 Roller slides L=290mm (see page 10)
- 5 Type D assembly pins (see page 13)
- 6 Type A assembly pins (see page 13)
- 7 Rack (see page 20-21)
- 8 Rack fixing plate (see page 20)
- 9 Toothed pinion
- 10 End cap (see page 28)
- 11 Ø76 shaped rollers (see page 17)
- 12 Guard profile (see page 30)

"C" Assembly:

This example again shows a 2-axis system realised by coupling two Rollon products.

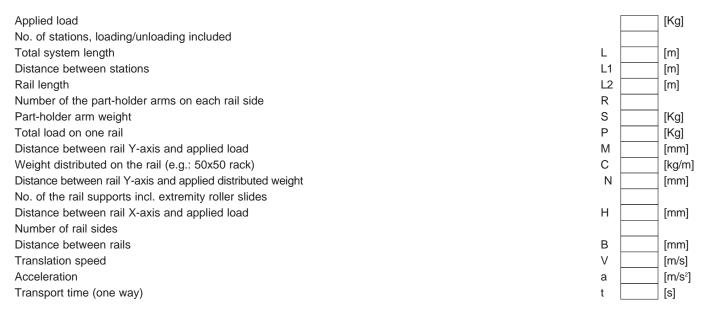
The horizontal axis is composed of a TCRQ 170 linear module (see Modline catalogue).

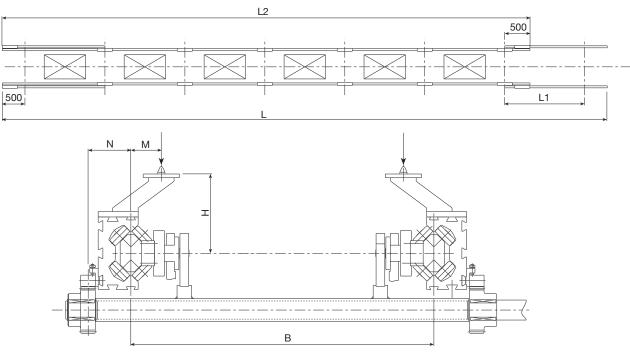
The vertical axis is pneumatically operated.

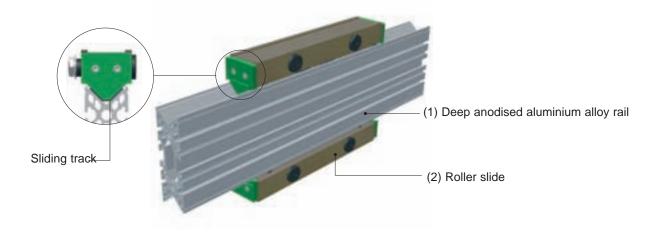
"D" Assembly:

This example represents a ZCY100 linear unit (see Modline catalogue).

This module is composed of a SYS rail sliding on rollers, it is toothed belt operated.


Sizing request form


For a proper definition of the application, fill in the scaling request form and send it to the Technical Support Department.


Date:	Request n°
	'
Address	
Phone	Fax
E-mail	

Lift and shift system with moving rail

SIZING TEMPLATE

SYStema was conceived to offer the market competitive and easy to use products.

It is used in handling and transfer systems and consists of light aluminium alloy rails (1) and low-friction roller slides (2). The peculiar feature of this rail is its geometry, that has been developed to optimize torsion performances and reduce reaction stresses on roller slides, with "competitive benefits" accordingly.

In detail, the sliding track configuration allows the system, with an equal torque applied to the rail, to minimize the roller reactions, compared to similar applications with the same overall dimensions, therefore:

• With an equal outside and overhanging load, the number of roller slides decreases as does the cost.

• With an equal roller slides number, the outside applied load and/or the projection can be increased.

The sliding tracks are built to protect the rolling elements and to minimize the width.

This allows the transfer system to be installed close to manufacturing sites.

Besides, the light alloy gives the rails a good mechanical resistance and protects them against aggressive external agents.

SYStema's assembly possibilities are:

- · Moving rail and fixed roller slides
- Fixed roller slides and moving rail

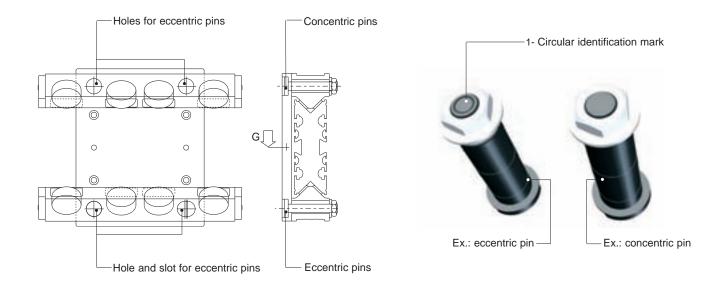
These two solutions, single or combined, can solve many problems; particularly, there is a possibility to produce Cartesian robots, palletizers and portal systems.

Some interesting applications have been realised in automation and robotics fields, plastic moulding, light industry, wood and rubber industry, painting, textile and handling fields.

A - Features

This translation system consists of a plate, where roller slides with concentric and eccentric pins are fixed.

The eccentric pins are fitted for adjusting backlash between roller slides and track and have a circular identification mark (1).


The plate is supplied with machining for pin assembly: through holes for concentric pins and hole and slot for eccentric ones.

B - Alignment

Sliding tracks have to be perfectly aligned.

C - Rack assembly

With rack drive it is very important to guarantee the exact parallelism between the sliding system and the rack axis.

D - Roller slide: assembly and adjustment

1) Check the alignment and set in contact the concentric pin roller slides and the rail.

2) Take up backlashes: operate on the eccentric pins fixed on the through hole first, then on the one fixed on the slot.3) Repeat the adjustment.

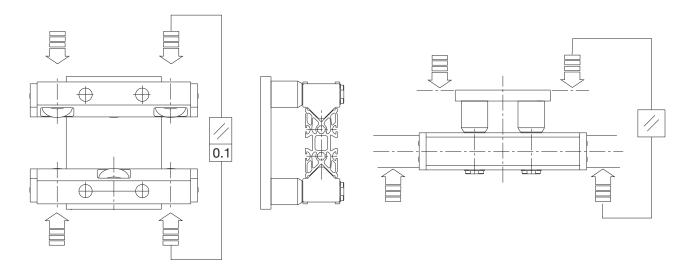
4) Rotate the reachable rollers with a finger: they must slide without roller slide advancing.

The mean load condition is easily achieved and can damage the plastic coating.

For the simultaneous assembly of several roller slides in one system, it is possible that not all rollers can remain in contact with the rails, because of the rail natural deformation.

In this case it is not advisable to act on the eccentric pins. It is important to check the smoothless capacity of the whole system, which should be high; if not, loosen the pins and repeat the adjustment. While assembling, ensure that the rollers and the rail surfaces are not dirtied by foreign bodies (oil, grease, chips, etc). Always use scrapers or protections (see page 30).

E - Rail protection


The roller slides are provided with spring scrapers, in order to keep the sliding surface clean and to avoid the roller meeting any obstacle while moving.

If this does not meet the customer's requirements, we can supply on demand other track protections, such as bellows, toothed belts or protecting straps.

It is possible to use the guard profile to protect the area between two roller slides (code 302.0147 – see page 30), always available in stock.

F - Tightening specificatons

Make sure all parts are blocked with proper screws, in compliance with the prescribed tightening torque standards.

WARNINGS

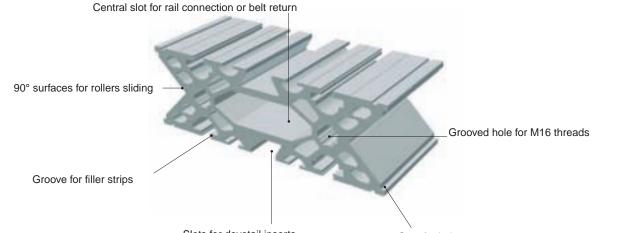
The mean load condition is easily achieved and can damage the plastic coating.

To realise a moving carriage with 1 plate and 2 x 3-roller slides, rollers should be symmetrically positioned, respect to the connecting plate.

Check the correct parallelism between the two roller slide opposite plane surfaces and between the roller slide connecting plates and the rail (primary control for the correct 3+3-roller slide assembly), and then block the eccentric pins without moving them.

The adjustment of D and E executions (foreseen for one hole roller slides) should be made by acting on the eccentric pin gradually, until the roller contact is reached, without reaching the mean load capacity.

Ensure that rollers keep their low-friction features, and then assemble the scrapers, allowing a minimal back-lash with the rail.

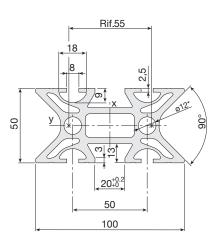

Rail description

The symmetrical rail section was developed to achieve maximum rigidity. It is provided with slots that can be used with a wide range of accessories always available in stock. The rail surface is chemically treated, in order to obtain considerable hardness above all on roller sliding tracks, guaranteeing its long-life (a silver anodised rail for light applications is available on demand).

Specifications	5
Material:	hard. and temp. racks light alum. alloy (AIMgSi)
Quality:	F = 25
Tolerances:	1/2 UNI 3879
Tear resistance	e: R = 245 - 270 N/mm ²
Yelding point:	Rp = 215 - 240 N/mm ²
Hardness:	HB = 70 - 90

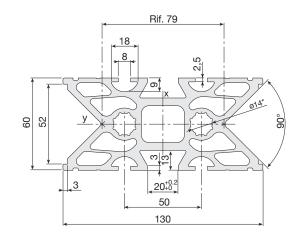
Surface treatments:

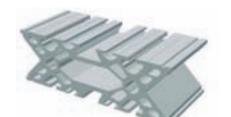
Deep anodizing (bronze coloured) – thickness > 0,055 mm, or silver coloured anodizing - thickness > 0,015 mm (on demand)


Slots for dovetail inserts

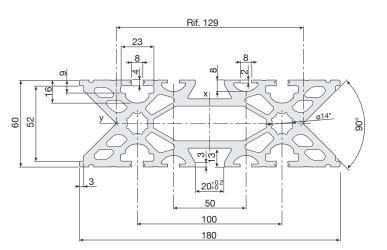
Seat for belt support

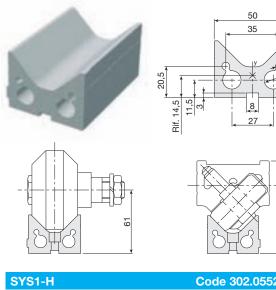
Rail specifications


SYS1-P	Code 302.07			
Size	50x100	mm		
Weight	4,7	Kg/m		
Max. length	7,5	m		
Moment of inertia (lx)	1.430.000	mm⁴		
Moment of inertia (ly)	450.000	mm⁴		
Bending section mod. (Wx)	28.600	mm ³		
Bending section mod. (Wy)	18.000	mm ³		
*Ualas for M14 thread and D\/S® connectors				



Holes for M14 thread and PVS[®] connectors


SYS1-M	Code 302.0	Code 302.0113		
Size	60x130	mm		
Weight	7,8	Kg/m		
Max. length	7,5	m		
Moment of inertia (Ix)	3.560.000	mm ⁴		
Moment of inertia (ly)	1.005.000	mm ⁴		
Bending section module (Wx)	54.708	mm³		
Bending section module (Wy)	33.500	mm³		
*Holes for M16 thread and PVS [®] connectors				


SYS1-G	Code 302.00	Code 302.0001		
Size	60x180	mm		
Weight	12	Kg/m		
Max. length	7,5	m		
Moment of inertia (Ix)	12.350.000	mm⁴		
Moment of inertia (ly)	1.600.000	mm⁴		
Bending section module (Wx)	137.220	тт³		
Bending section module (Wy)	53.330	mm³		
4				

*Holes for M16 thread and $\mathsf{PVS}^{\scriptscriptstyle \otimes}$ connectors

Single track guide

Sys

1,5

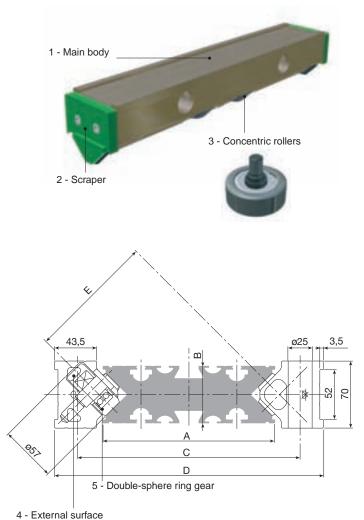
SYS1-H	Code 302.05	52
Weight	3,2	Kg/m
Max. length	6	m
Moment of inertia (Ix)	103.500	mm⁴
Moment of inertia (ly)	292.000	mm ⁴

Special machining on demand

Roller slide description

The main body (1) is made of a high strength aluminium alloy; it can be delivered with 2, 3, 4 and 6 concentric rollers (3) and equipped with scraper (2).

The roller slide is provided with double-sphere ring gear bearings (5), lubrication-free, and neoprene O-rings, to ensure the lowest friction coefficient. The roller external surface is covered with a low-friction plastic material, which guarantees the maximum noise reduction and lowest possible rail wear. Roller slides are mounted on a base plate by concentric and eccentric pins. It is very important to fix eccentric pins on the lowest load side.


A 4-roller slide version with central assembly pin is also available. This pin allows a well balanced load distribution on each bearing through a slight oscillation (type 7).

Type D and E pins (see page 13) are generally used in mounting double-rail assemblies, in order to compensate any parallel error.


Туре	Α	В	С	D	E
SYS 1-P	100	50	158	206	81
SYS 1-M	130	60	182	230	98
SYS 1-G	180	60	232	280	134

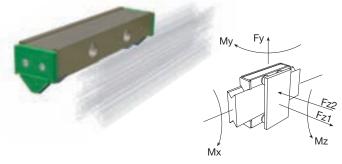
Roller specifications

Specifications		
Cw	10.400	Ν
C0w	6.600	Ν
Admissible Fr	1.400	Ν
Max. speed	5	m/s

Roller slide size

The stated dynamic values do not correspond to the theoretical max. load capacities.

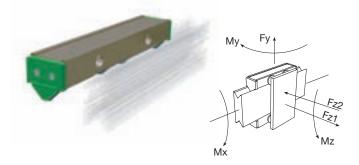
They already consider safety factors proper for automation machinery.

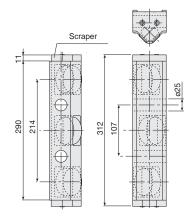

All mentioned data refer to the peak efficiency of each stress. Should more peak stresses occur at the same time, please contact our technical dept.

Type 3 roller slide

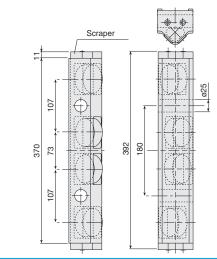
Type 0 roller slide

Type 3


3-roller slide, fixed assembly with 2 pins centre-distance: 107mm **ATTENTION:** please refer to "Warnings" on page 7 for a correct assembly.

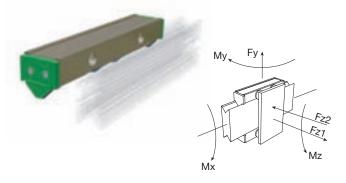

	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _y [N]	F _{z1} [N]	$F_{z2}[N]$
SYS1-N	257	128	128	2000	2000	3950
SYS1-G	343	128	128	2000	2000	3950

Type 5


4-roller slide, fixed assembly with 2 pins centre-distance: 180mm

	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _y [N]	F _{z1} [N]	$F_{z2}[N]$
SYS1-M	257	355	315	3950	3950	3950
SYS1-G	343	355	315	3950	3950	3950

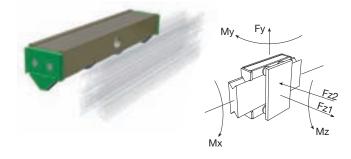
Specifications	
Number of rollers	3
Weight	about 3 Kg
Spare part	Code 304.0716



Specifications	
Number of rollers	4
Weight	about 4 Kg
Spare part	Code 304.0717

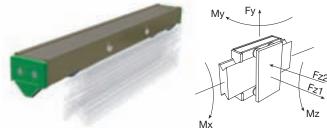
Alternative version

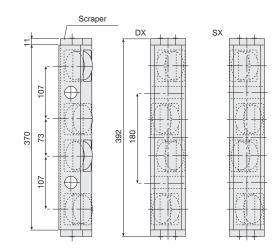
Roller slide with alternate rollers for vertical and/or overhanging horizontal rail applications


(Please state plate, pins and roller slide apart). Position the roller slide properly while assembling.

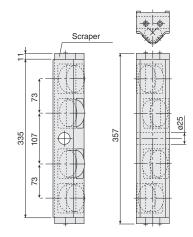
	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _y [N]	F _{z1} [N]	$F_{z2}[N]$
SYS1-M	257	567	315	3950	3950	3950
SYS1-G	343	567	315	3950	3950	3950

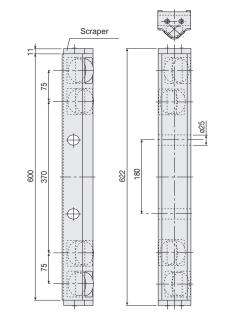
Type 7


4-roller slide, assembly with 1 self-aligning pin.

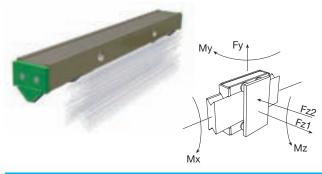

	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _y [N]	F _{z1} [N]	$F_{z2}[N]$
SYS1-M	257	355	-	3950	3950	3950
SYS1-G	343	355	-	3950	3950	3950

Type 9

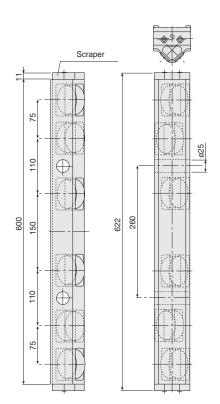

4-roller slide, fixed assembly with 2 pin centre-distance: 180mm


	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _y [N]	F _{z1} [N]	F _{z2} [N]
SYS1-M	257	878	668	3950	3950	3950
SYS1-G	343	878	668	3950	3950	3950
Specifi	cations					
Number	of rollers	5			4	
Weight		about 6,5 Kg				
Spare part Code 304.07				0719		

Components	
Right roller slide	Code 304.0837
Left roller slide	Code 304.0866



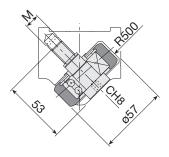
Specifications	
Number of rollers	4
Weight	about 4 Kg
Spare part	Code 304.0718


Type 0

6-roller slide, fixed assembly with 2 pins centre-distance: 260mm On request it is possible to ask for this roller slide equipped with 4 external rollers only (code 304.0934).

M _{x1} [Nm]	M _{x2} [Nm]	M _y [Nm]	M _z [Nm]	F _y [N]	F _{z1} [N]	$F_{z2}[N]$
SYS1-M 257	411	950	668	3950	6317	3950
SYS1-G 343	548	950	668	3950	6317	3950

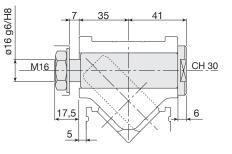
Specifications	
Number of rollers	6
Weight	about 7 Kg
Spare part	Code 304.0720



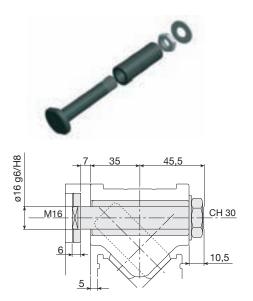
Spare part pin with roller

Components	
Spare part pin with Ø 57 roller	Code 305.0958
Spare part with stainless steel pin	Code 305.0951

In case of maintenance, by reassembling the pin, do not lubricate the thread and apply **a tightening torque of max 55 Nm.**

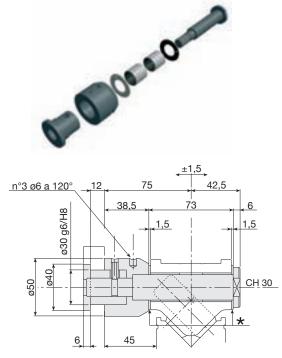

Assembly pins

Type N assembly pins



Specifications	
Weight	0,4 Kg circa
Concentric	Code 336.1001
Eccentric	Code 336.1002

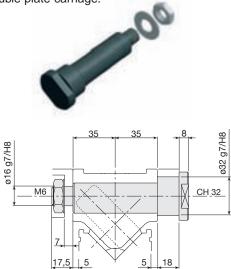
Material: blued steel. Special executions on demand. Some versions are also available in AISI 303 stainless steel **ATTENTION:** please refer to "Warnings" on page 7 for a correct assembly.


Type A assembly pins

about 0,4 Kg
Code 336.0701
Code 336.0702

Type D self-aligning pins

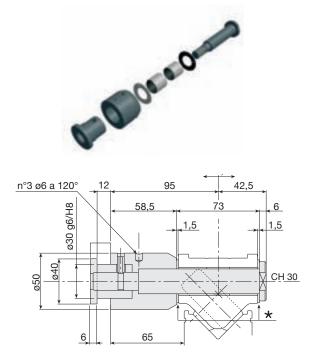
For parellelism error compensation (±1,5 mm).



* **NB:** remove the two washers to obtain a roller slide self-alignment of $\pm 1,5$ mm.

Specifications	
Weight	about 1,3 Kg
Concentric	Code 336.0707
Eccentric	Code 336.0708

Type F assembly pins


For double plate carriage.

Specifications	
Weight	about 0,5 Kg
Concentric	Code 336.0738
Eccentric	Code 336.0739

Type E self-aligning pins

For parellelism error compensation (±1,5 mm).

 \star NB: remove the two washers to obtain a roller slide self-alignment of $\pm 1,5mm.$

Specifications	
Weight	about 1,6 Kg
Concentric	Code 336.0709
Eccentric	Code 336.0710

Connecting plates

Material: 6082 aluminium alloy.

ATTENTION: eccentric pins must be mounted on the side with the lower load.

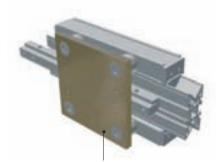
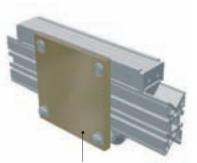
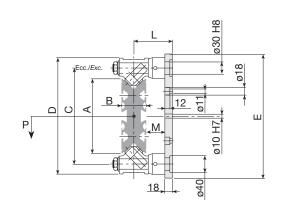


Plate for type D-E pins

Plate for type A-N pins

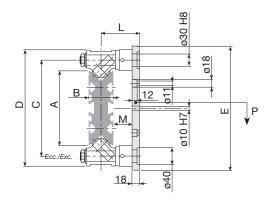
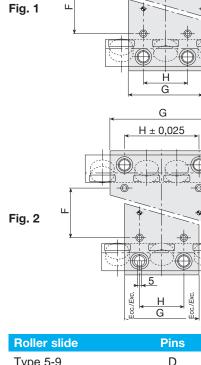
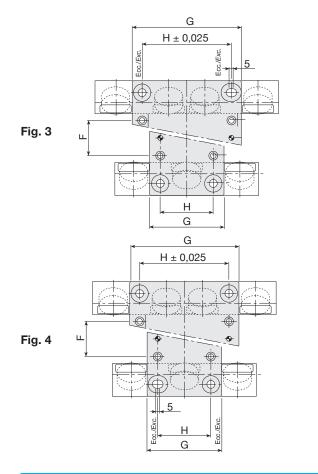
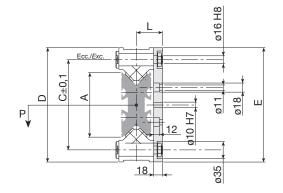

Plate for type A-N pins and V-shaped rollers

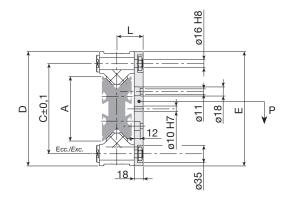
Plate for type D-E pins


When a "fixed carriage/moving rail" application is required, where the load (P) is applied onto the bar, please arrange pins as shown in figure no.1.

G H ± 0,025 When a "moving carriage/fixed rail" application is required, where the load (P) is applied onto the carriage, please arrange pins as shown in figure no. 2

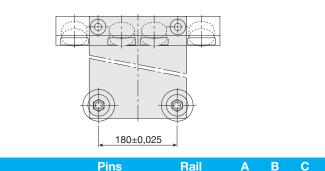

Roller slide	Pins	Rail	Α	В	С	D	E	F	G	н	L.	Μ	Plate
Type 5-9	D	SYS1-M	130	60	182	230	250	70	250	180	93	45	315.0660
Type 5-9	D	SYS1-G	180	60	232	280	300	100	250	180	93	45	315.0659
Type 5-9	Е	SYS1-M	130	60	182	230	250	70	250	180	113	65	315.0660
Type 5-9	Е	SYS1-G	180	60	232	280	300	100	250	180	113	65	315.0659
Туре 3	D	SYS1-M	130	60	182	230	250	70	180	107	93	45	315.0662
Туре 3	D	SYS1-G	180	60	232	280	300	100	180	107	93	45	315.0661
Туре 3	Е	SYS1-M	130	60	182	230	250	70	180	107	113	65	315.0662
Туре 3	Е	SYS1-G	180	60	232	280	300	100	180	107	113	65	315.0661

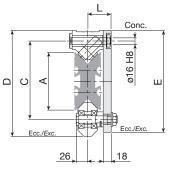



Plate for type A-N pins

When a "fixed carriage/moving rail" application is required, where the load (P) is applied onto the bar, please arrange pins as shown in figure no. 3.

When a "moving carriage/fixed rail" application is required, where the load (P) is applied on the carriage, please arrange pins as shown in figure no. $4\,$





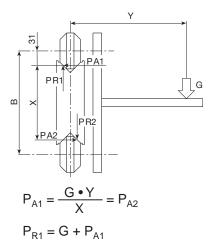
Roller slide	Pins	Rail	Α	В	С	D	E	F	G	н	L	Μ	Plate
Type 5-9	A-N	SYS1-M	130	60	182	230	230	70	220	180	53	5	315.0656
Type 5-9	A-N	SYS1-G	180	60	232	280	280	100	220	180	53	5	315.0655
Туре 3	A-N	SYS1-M	130	60	182	230	230	70	150	107	53	5	315.0658
Туре 3	A-N	SYS1-G	180	60	232	280	280	100	150	107	53	5	315.0657

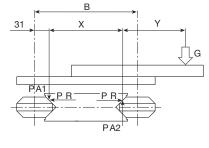
Plate for type A-N pins and V-shaped rollers

							-	>	 < > <	_		
Roller slide	Pins	Rail	Α	В	С	D	E	F	G	н	L	Plate
Type 5-9 + shaped roll.	A-N	SYS1-M	130	60	177	239	230	-	220	180	53	315.1032
Type 5-9 + shaped roll.	A-N	SYS1-G	180	60	227	289	280	-	220	180	53	315.1031

Order code table

Roller slides	and pir	າຣ					
5	-						
			3	5	7	9	0
		con.	304.0243	304.0245	-	304.0726	304.0727
5	Ν	exc.	304.0303	304.0305	-	304.0728	304.0729
		con.	304.0203	304.0205	-	304.0601	304.0602
5	Α	exc.	304.0263	304.0265	-	304.0617	304.0618
	D	con.	304.0221	304.0223	304.0225	304.0607	304.0608
45	D	exc.	304.0281	304.0283	304.0285	304.0623	304.0624
		000	204 0220	204 0224	204 0222	204 0600	204.0610
	Е	con.	304.0229	304.0231	304.0233	304.0609	304.0610
<u>65</u>		exc.	304.0289	304.0291	304.0293	304.0625	304.0626
	-	con.	304.0237	304.0239	-	304.0611	304.0612
5 5	F	exc.	304.0297	304.0299	-	304.0627	304.0628


Roller slides equipped with pins and plate



	N	Rail SYS1-M SYS1-G	3 304.0423 304.0363	5 304.0425 304.0365	9 304.0735 304.0734
	Α	SYS1-M SYS1-G	304.0383 304.0323	304.0385 304.0325	304.0641 304.0633
45	D	SYS1-M SYS1-G	304.0401 304.0341	304.0403 304.0343	304.0644 304.0636
	E	SYS1-M SYS1-G	304.0409 304.0349	304.0411 304.0351	304.0645 304.0637
5 5	F	SYS1-M SYS1-G	304.0417 304.0357	304.0419 304.0359	304.0646 304.0638

Profiled Rollers

Material: black high-resistance polyamide coating. Eccentric or concentric blued steel pin.

 $P_{A1} = \frac{G \bullet Y}{X}$

 $\mathsf{P}_{\mathsf{A2}} = \mathsf{P}_{\mathsf{A1}} + \mathsf{G}$

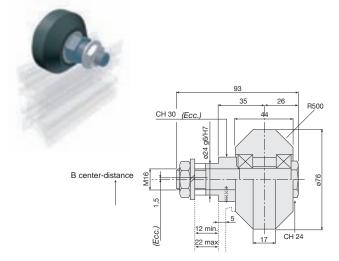
X = A - 20 mm

longer pins.

31 W G PR PR PA1

On demand: white polyacetic coating (high hardness);

 $\mathsf{P}_{\mathsf{A1}} = \frac{\mathsf{G} \bullet \mathsf{Y}}{\mathsf{W} + \mathsf{Y}}$ $\mathsf{P}_{\mathsf{A2}} = \mathsf{G} - \mathsf{P}_{\mathsf{A1}}$


PA2

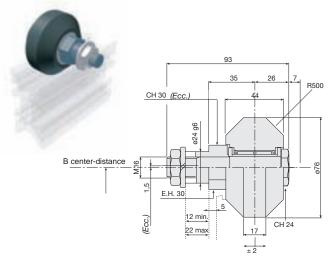
B center-distances							
SYS1-H	SYS1-P	SYS1-M	SYS1-G	Code			
61	148	172	222	305.0730/1			
61	148	172	222	305.0732/3			
61	148	172	222	305.0747/8			
57	140	164	214	305.1570/1			

Ø76 shaped rollers

 $P_{R2} = P_{A2}$

Material: high-resistance black polyamide coating. Eccentric or concentric blued steel pin.

Middle version roller (radial bearings)

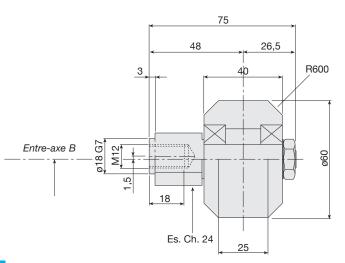

Туре	Weight [kg]	PR [N]	PA [N]	Speed [m/s]	Code
Ecc.	0,6	800	200	2	305.0730
Conc.	0,6	800	200	2	305.0731

Heavy version roller (skew contact bearings)

Туре	Weight [kg]	PR [N]	PA [N]	Speed [m/s]	Code
Ecc.	0,6	1200	500	2	305.0732
Conc.	0,6	1200	500	2	305.0733

Ø76 V-shaped self-aligning rollers

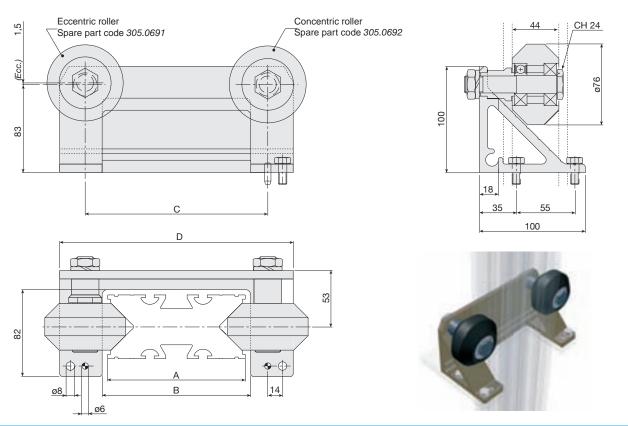
External coating with ±3 mm end float. For parallel rail application. To be coupled with shaped roller (see page 17).


Floating roller

Туре	Weight [kg]	PR [N]	PA [N]	Speed [m/s]	Code
Ecc.	0,6	1400	0	2	305.0748
Conc.	0,6	1400	0	2	305.0747

Ø60 V-shaped rollers

Material: high-resistance black polyamide coating. Drilled, threaded, chromium plated steel enbloc pin. Clamping screw not included.

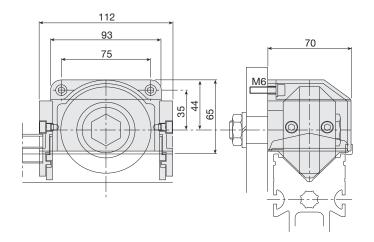


Туре	Weight [kg]	PR [N]	PA [N]	Speed [m/s]	Code
Ecc.	0,5	500	120	2	305.1570
Conc.	0,5	500	120	2	305.1571

Angular support

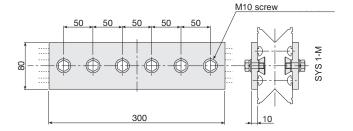
Angular support complete with 2 V-shaped rollers for SYS1 rails. Suitable for applications with rail mounted orthogonally respect to the plate plane.

Rail	Α	В	С	D	Weight [Kg]	Code
SYS1-P	100	110	148	195	1,6	304.1017
SYS1-M	130	140	172	220	1,8	304.0476
SYS1-G	180	190	222	270	2	304.0667


Roller guard

Code 312.1572

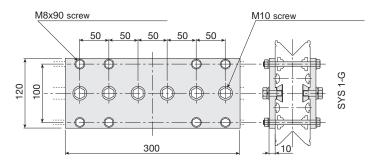
Ø76 shaped roller guard in black stiffened plastic material, complete with grooved scraper for guard profile. (see page 30).



Rail connecting plates

SYS1-M connecting plate

Material: bronze coloured anodized 6082 aluminium alloy.



Double connecting plate	Code
Complete set	336.0198
Single plate	315.0724

SYS1-G connecting plate

Material: bronze coloured anodized 6082 aluminium alloy.

Double connecting plate	Code
Complete set	336.0188
Single plate	315.0713

N.B.: Please ask for code ..-62/... or ...-63/... to get the rail drilled (see page 31)

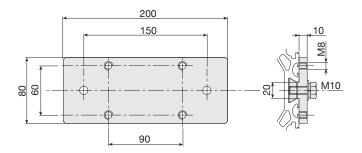
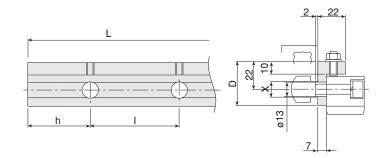

On demand

Plate for built in screws and nuts	Code	
Double plate	336.0879	
Single plate	315.0882	

Accessory fixing plate

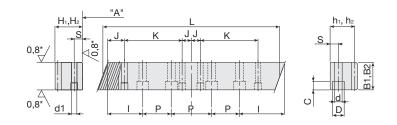
Material: bronze coloured anodiz ed 6082 aluminium alloy.



For SYS1 rail	Code
Complete set	336.0666
Single plate	315.0185

Rack fixing plate

Obtained by extrusion. Material: natural anodized 6082 aluminium alloy.



Module	D	L	l I	h	Hole no.	X	Code
2	35	50	-	25	1	8	315.0005
2	35	243	126,1	56,35	2	8	215.0025
2	35	491	126,1	56,35	4	8	215.0026
3	35	50	-	25	1	8	315.0583
3	35	243	126,1	56,35	2	8	215.2368
3	35	491	126,1	56,35	4	8	215.2137
3	35	50	-	25	1	20	315.0578
3	35	243	126,1	56,35	2	20	315.0001
3	35	491	126,1	56,35	4	20	315.0002
4	39	243	125,3	57,55	2	20	315.0003
4	39	491	125,3	57,55	4	20	315.0004

Helical Teeth (right-hand 19° 31' 42", press. angle 20°)

- KBD CK 45: normalized, milled
- KTD CK 45: normalized, induction hardened teeth
- KFD CK 45: normalized, hardened teeth, 3 ground sides
- KSD CK 45: normalized, hardened, induction, ground teeth and sides
- KRD AISI 984: induction hardened alloyed steel, ground sides and teeth

*machining of surfaces NOT available on version KBD - KTD

Treatment	Rs	Hardness	Quality	Precision
KBD CK 45	650 N/mm ²	-	Q8	0,085mm/300mm
KTD CK 45	650 N/mm ²	≥ HRC 56	Q9	0,085mm/300mm
KSD CK45	> 650 N/mm ²	≥ HRC 56	Q6	0,025mm/300mm
KRD AISI 9840	> 900 N/mm ²	HRC 60 c.a.	Q6	0,025mm/300mm

Mod	I. H1	H2	B ₁	B2	L	1	J	d	D	С	d1(H7)	S	h1	h2	Ρ	K	p.[kg]	Code
2	25	24	25	24	500	62,5	35	7	11	7	6	8	23	22	125	430	2,2	211.2429
2	25	24	25	24	1000	62,5	35	7	11	7	6	8	23	22	125	430	4,3	211.2363
3	30	29	30	29	500	62,5	35	10	15	9	8	9	27	26	125	430	3,0	211.2367
3	30	29	30	29	1000	62,5	35	10	15	9	8	9	27	26	125	430	6,1	211.2351
4	40	39	40	39	500	62,5	35	10	15	9	8	12	36	35	125	430	5,5	211.2366
4	40	39	40	39	1000	62,5	35	10	15	9	8	12	36	35	125	430	10,9	211.2349

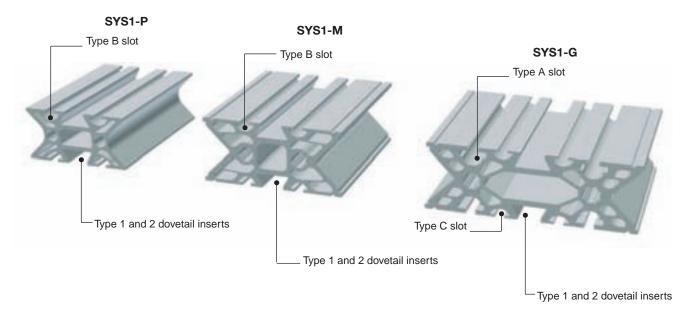
Code 211.2426 / BD

— Teeth and treatment features

Pinion Gears

- ND Pinion with helical teeth
- RD Pinion with ground helical teeth

Туре	Material	Surf. treat.	RS	Quality	Hardness
ND	Special steel	tempered and hardened	>900 N/mm ²	Q8	HRC 50
RD	16MnCr5	temp. induction-hardened	>900 N/mm ²	Q7	HRC 60


Helical tooth pinion

mod.	p.[kg]	Z	Øp	Øi	b	x	Code
2	0.2	21	44.56	22	28	56	201.0005
2	0.6	30	63.66	22,30,32	28	56	201.0012
3	0.8	20	63.66	22,25,30,32	28	65	201.0007
3	1.4	28	89.13	25,30,32	28	65	201.0013
4	1.5	18	76.39	32	40	75	201.0009
4	2.8	25	106.10	55	40	80	201.0014

Code 201.0007 / ND / 25 Øi Teeth and treatment features S Y

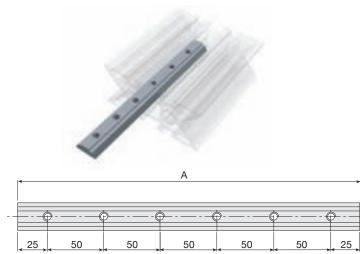
дØ

Slot details

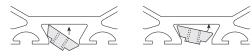
Dovetail inserts

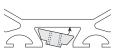
Dovetail insert

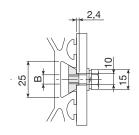
Material: C40 blued - M8 and M10 holes. Special lengths on demand.

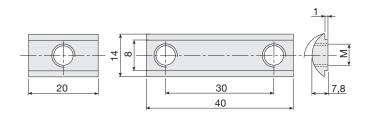


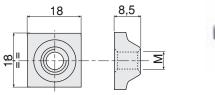
<	A		
25 50 J	 50	50 <u>25</u>	


Α	В	Hole no.	Code
50	M8	1	314.0170
150	M8	3	314.0172
300	M8	6	314.0175
50	M10	1	314.0164
150	M10	3	314.0166
300	M10	6	314.0169
	-	3 6	


Dovetail centering insert (type 2)


NB: All dovetail centering inserts can be frontally inserted into the bigger slot.


Α	В	Hole no.	Code
50	M8	1	314.0178
300	M8	6	314.0183


Thread	Hole no.	L	Code
M5	1	20	A32-55
M6	1	20	A32-65
M8	1	20	A32-85
M6	2	40	A32-67

Square nuts and spring

Also suitable for profiles STATYCA, VALYDA, LOGYCA, PRATYCA and SOLYDA.

Material: galvanised steel.

Important: inserts must be inserted into the longitudinal slots before assembling.

20

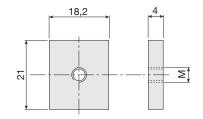
20

Square nut

Code

209.0023

209.0019


209.1202

209.0467

Flat inserts

Material: zinc plated steel.

Thread	Code
M4	A32-40
M5	A32-50
M6	A32-60
M8	A32-80
Spring	211.1061

Spring nuts

Plastic compound spring

Thread

Spring M4

M5

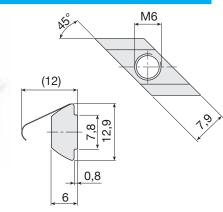
M6

M8

For universal assembly. Can be frontally inserted into the slot, even after assembly. Material: zinc plated steel.

Code 18x18

101.0732

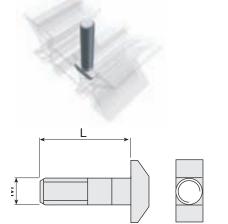

209.0031

209.0032

209.0033

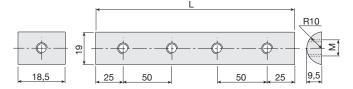
209.0034

Thread	Code
M3	AC31-30
M4	AC31-40
M5	AC31-50
M6	AC31-60
Spring	AC31-90



T-bolts

Suitable for 8mm slots. Can be frontally inserted, even after assembly. Material: zinc plated steel.

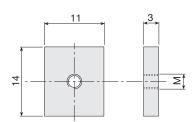

Half-round threaded inserts

Material: zinc plated steel.

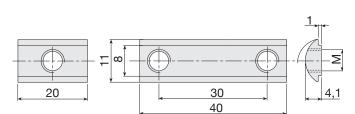
MxL	Code
M8x20	A35-20
M8x25	A35-25
M8x30	A35-30
M8x40	A35-40
M8x60	A35-60

Thread	Hole no.	L	Code
M6	1	18.5	A32-61
M8	1	18.5	A32-81
M8	2	80	A32-82
M8	3	150	A32-83
M8	4	200	A32-84
M8	5	250	A32-89
M8	6	300	A32-86
M8	7	350	A32-87

Type B-C slots


Steel threaded inserts

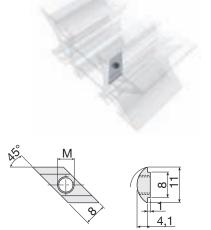
Material: zinc plated steel; harmonic steel spring.


Flat inserts

Material: zinc plated steel.

Thread	Code
M3	B32-30
M4	B32-40
M5	B32-50
M6	B32-60
Spring	211.1077

Thread	Hole no.	L	Code
M5	1	20	B32-55
M6	1	20	B32-65
M8	1	20	B32-85
M6	2	40	B32-67


Spring nuts

For universal assembly. Can be frontally inserted into the slot, even after assembly. Material: zinc plated steel.

T-bolts

ωĴ

Suitable for 8mm slots. Can be frontally inserted, even after assembly. Material: zinc plated steel.

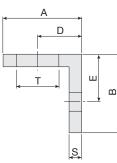
<u>د</u>	→	
≥↓		\bigcirc

Thread	Code
M3	BD31-30
M4	BD31-40
M5	BD31-50
M6	BD31-60
Spring	BD31-90

MxL	Code
M6x15	B35-15
M6x20	B35-20
M6x30	B35-30
M6x40	B35-40

Threaded Inserts

Material: chromium plated steel. Ask for M14 or M16 thread. SYS1-P : M14 thread (B33-.. series) SYS1-M,G: M16 thread (A33-.. series)


Rail	M1	Μ	S	L	Code
SYS1-P	14	10	10	25	B33-21
SYS1-P	14	8	8	25	B33-28
SYS1-P	14	6	6	25	B33-26
SYS1-M / G	16	10	10	25	A33-20
SYS1-M/G	16	8	8	25	A33-28
SYS1-M / G	16	6	6	25	A33-26

Assembly brackets

Through hole bracket

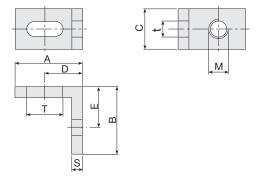
Through hole bracket for mounting additional equipment. Material: natural anodized 6060 aluminium alloy.

Α	В	С	D	Е	S	Tx t	Ø	Code
45	45	20	25	25	5	15 x 6.5	6	A30-76
35	25	20	19	15	5	20 x 6.5	4	A30-54
35	25	20	19	15	5	20 x 6.5	5	A30-55
35	25	20	19	15	5	20 x 6.5	6	A30-56
25	25	15	14	15	4	13.5 x 5.5	3	B30-53
25	25	15	14	15	4	13.5 x 5.5	4	B30-54
25	25	15	14	15	4	13.5 x 5.5	5	B30-55
25	25	15	14	15	4	13.5 x 5.5	6	B30-56

Accessory fixing bracket

Bracket mainly used to fix accessories and to reinforce frames realised with profiles.

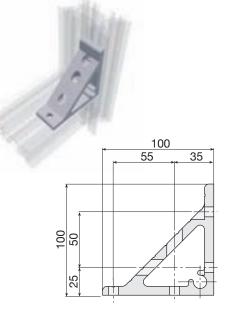
Material: natural anodized 6060 aluminium alloy.

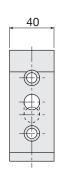


Α	В	С	D	E	Ø	Μ	Code
60	20	8	45	-	6,5	-	B30-10
60	20	8	45	-	6,5	M6	B30-20
60	30	8	45	-	9	-	A30-10
60	30	8	45	-	9	M6	A30-20
38	30	8	25	-	9	-	A30-00
31	20	6	20	-	6,5	-	C30-00

Threaded hole bracket

Threaded hole bracket for mounting additional equipment. Material: natural anodised 6060 aluminium alloy.





Α	В	С	D	Е	S	Tx t	Μ	Code
45	45	20	25	25	5	15 x 6.5	M6	A30-86
35	25	20	19	15	5	20 x 6.5	M4	A30-64
35	25	20	19	15	5	20 x 6.5	M5	A30-65
35	25	20	19	15	5	20 x 6.5	M6	A30-66
25	25	15	14	15	4	13.5 x 5.5	М3	B30-63
25	25	15	14	15	4	13.5 x 5.5	M4	B30-64
25	25	15	14	15	4	13.5 x 5.5	M5	B30-65
25	25	15	14	15	4	13.5 x 5.5	M6	B30-66

Code 213.0756

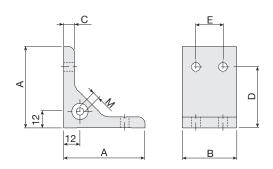
Bracket for rail connection. Material: natural anodized 6060 aluminium alloy.

Threaded hole bracket

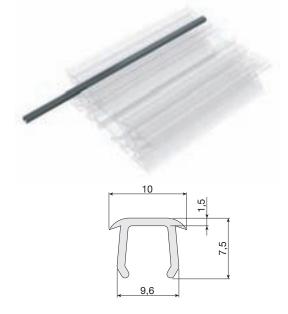
Bracket for rail connection.

Material: natural anodized 6060 aluminium alloy.

Α	В	С	D	E	Ø	Μ	Code
38	80	8	25	50	9	-	A30-02
31	60	6	20	40	6,5	-	C30-02

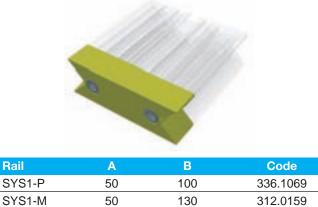

Aluminium filler strips

Aluminium filler strips L=1000 mm are used to blank out the longitudinal SYS1-G "A" slots.



Description	Code
Black	A39-10
Natural anodized	A39-10 ALU

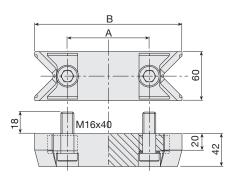
PVC filler strips


Grey or black PVC filler strips L= 5000mm suitable for any 8 mm longitudinal slots.

Description	Code
Grey	A39-25/5000
Black	A39-26/5000

Guide end parts

Guide end parts for the rail fitting in the roller slides (degree 15°). Yellow plastic material (hardness: 95° Shore), complete with assembling accessories.



130

180

312.0159

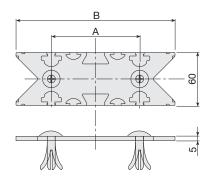
312.0158

NB: holes on rail ends should be threaded M16.

50

100

End caps


Rail

SYS1-G

Green polymer material, complete with assembling accessoires.

Rail	А	В	Code
SYS1-P	50	100	312.0846
SYS1-M	50	130	312.0679
SYS1-G	100	180	312.0680

Rail Extension Kits

Code 336.0597

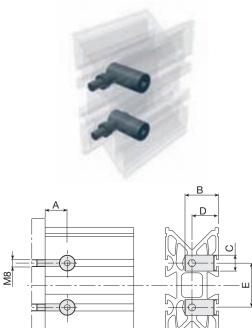
Complete group for SYS1-G and SYS1-M rail extension (without side projections on the rail).

Please ask for code ... -60/... or ... -61/... to get the rail end drilled (see page 31).

Pins to be executed during assembly

PVS® connectors

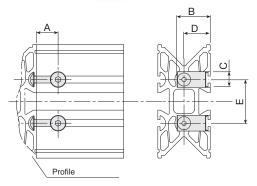
 $\mathsf{PVS}^{\circledast}$ connectors are used to mount plates or accessories to the rail end.


They are manufactured in zinc plated steel.

To use PVS® connectors, rails should be drilled.

Please ask for machining code 33 or 34 (see page 31).

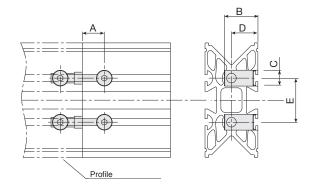
Threaded connectors


PVS® for rail / plate at 90° assembly.

Rail	Α	В	С	D	E	Code
SYS1-P	25	33	15	25	50	B20-60
SYS1-M	25	38	18	30	50	A20-60
SYS1-G	25	38	18	30	100	A20-60

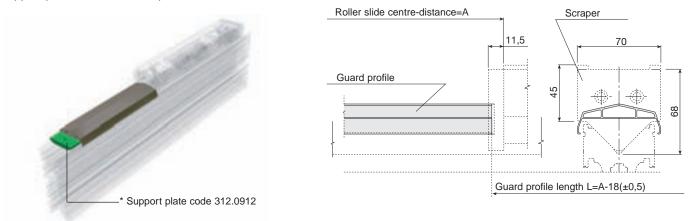
Standard connectors PVS[®] for rail / rail at 90° assembly.

Rail	Α	В	С	D	Е	Code
SYS1-P	25	33	15	25	50	B20-90
SYS1-M	25	38	18	30	50	211.1617
SYS1-G	25	38	18	30	100	A20-90


Rail extension connectors

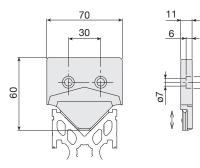
Plates

PVS® for rail / rail assembly.


Rail	Α	В	С	D	E	Code
SYS1-P	25	33	15	25	50	B24-00
SYS1-M	25	38	18	30	50	A24-00
SYS1-G	25	38	18	30	100	A24-00

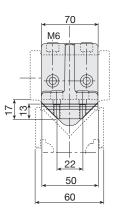
Guard profiles

Guard profile code 302.0147 / length


Material: bronze anodized aluminium alloy (max. L=7 m) *Guard profile longer than 3 m should be mounted with a support plate in intermediate position.

Spring scraper code 312.1026

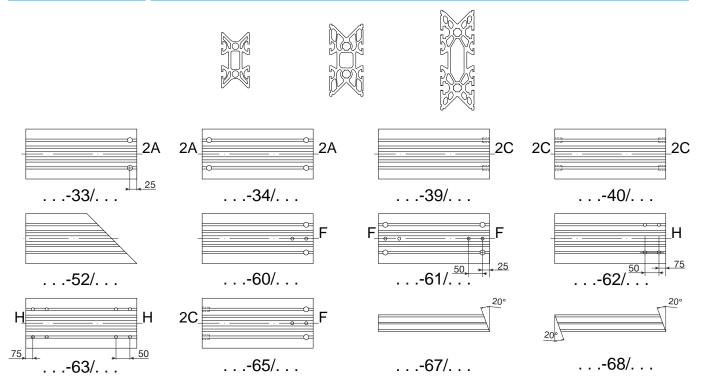
With grooved seat for guard profile. Material: green coloured plastic.



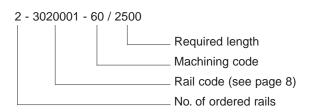
Belt assembly

This device is used to fix the toothed belt to the roller slide and is provided with toothed plate and special scraper. **N.B. Please ask for roller slide presetting.**

ت	
	116
	<u>24</u> , <u>21</u> , <u>9</u>

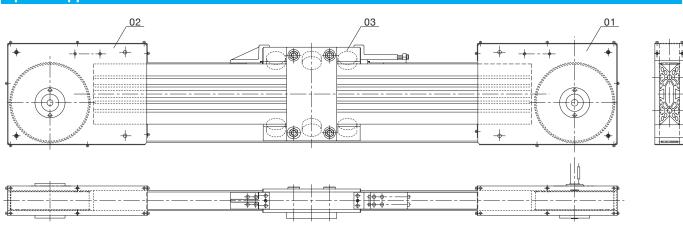


6


Com	plete belt fixing group	Code 336.0007
01	Belt fixing bracket	313.0884
02	Toothed plate for 50AT10 belt	315.0885
03	Special scraper (1,5 mm thickness	312.0935

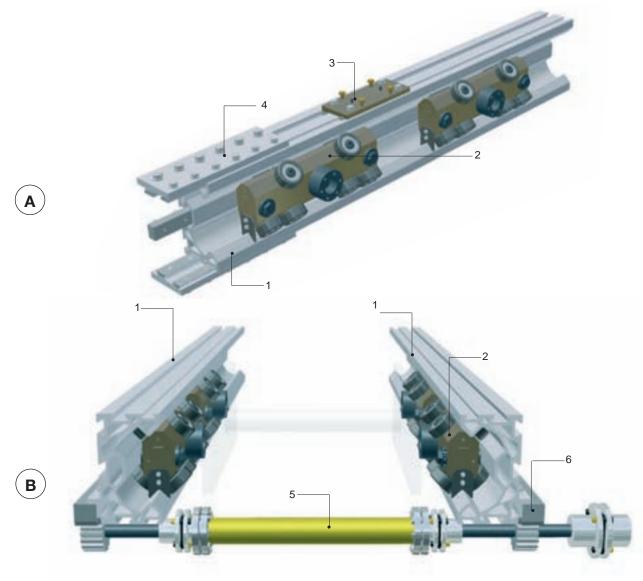
Machining Codes

Standard machining on rails



- Milling for Ø15 or Ø18 PVS® (see rails) Α
- M14 or M16 threads (see rails) С
- F Drilling to rails connection, code 336.0597
- Drilling to rails connection, code 336.0597 Н

ORDER CODE EXAMPLE:

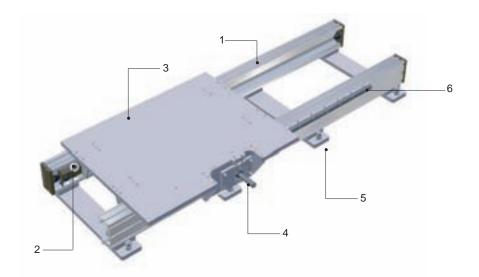


Com	ponents	Code
01	Drive head	336.0003
02	Driven head	336.0004
03	Complete carriage	336.0005

Assembly solutions

A assembly:

This assembly example represents an axis composed of a single rail. With this configuration you can keep the roller slides steady and move the rail by using pneumatic cylinders, pinion/rack or belt drive systems (not shown here).

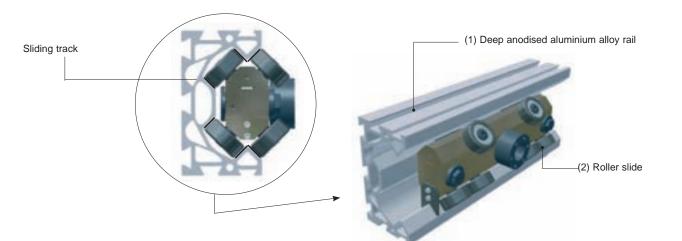

Legend:

- 1 SYS 2 rail (see page 35)
- 2 Self-aligning roller slide (see page 36)
- 3 Accessory fixing set (see page 38)
- 4 Rail extension plate set (see page 38)
- 5 Connecting shaft (see Modline and Tecline catalogue)
- 6 Racks and fixing plates (see page 20-21)

B assembly:

This assembly example represents a system composed of 2 pinion/rack-operated moving rails.

It is mainly used to build lift and shift linear units for metal sheet handling.


This assembly example represents a slide composed of a carriage (plate and 4 roller slides complete with welded supports) running on 2 profiles that act like a rail.

In this configuration the self-aligning roller slides are mounted on the rack opposite site (see page 36), to compensate any stress caused by rail parallelism errors. This system is mainly used as robot-holder, elevators and palletisers.

Legend:

- 1 SYS2 rail (see page 35)
- 2 Self-aligning roller slide (see page 36)
- 3 Base plate
- 4 Gearbox assembly set
- 5 Risers
- 6 Racks and fixing plate (see page 20-21)

Overview

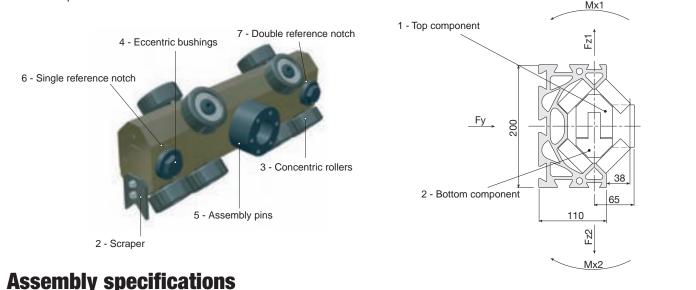
A rugged aluminium C-shaped rail (1) is at the basis of the SYS2 translation system.

The linear motion is made through 8-12- or more roller slides running on the hardened inside surfaces.

The rail section allows the full rollers and sliding surfaces protection; moreover, an additional lateral guard gives the rail a completely closed rectangular section.

Thanks to its particular features, this system can also be used as slide handlings, elevators, palletizers and Cartesian robots.

Roller slide description


The main body consists of two joined high-resistance light alloy components (1-2). It is provided with double-sphere ring gear angular contact bearings, neoprene O-rings, to ensure the lowest friction coefficient.

Lubrication is not required for the standard version, giving a great advantage to the plant operating efficiency.

The roller external surface is covered by a low-friction plastic material, which guarantees the maximum noise reduction and lowest possible rail wear.

Roller slides can be supplied in two solutions: 16- and 20-rollers with 2 assembly pins (length: 480 and 600 mm) and scraper (4) or 8- 12-rollers with just 1 central assembly pin, which allows a well balanced load distribution on each bearing through a slight oscillation.

A self-aligning roller slide version with 1 locking pin is also available.

A - Features

The sliding system generally foresees 2 assembly possibilities: moving rail and fixed roller slides (example 1) or fixed roller slides and moving rail (example 2).

If the application requires fixed rails and moving carriage, it is very important to pay particularly attention to the rail alignment while assembling, in order to avoid any additional loads on the rollers, that could limit their life.

The max. possible tolerance between 2 rails is ±1mm.

In this case is highly recommended to use self-aligning roller slides. If the sliding system is pinion/rack operated, check that slipping washers (see page 36) are removed on the roller slides fixed on the rack opposite side.

Rail connecting systems are available on demand.

B - Alignment

Sliding tracks have to be perfectly aligned.

C - Rack assembly

With rack drive it is very important to guarantee exact parallelism between the sliding system and the rack axis. (rack and fixing plates on page 20-21).

D - Roller slide assembly and adjusting

The roller slide can be assembled and disassembled through the rail groove.

The correct backlash adjustment between rollers and rail sliding tracks must be made along the rail vertical axis, acting on the roller slide eccentric bushings (4).

It is recommended to adjust any backlash near each support, to avoid possible rail deformations caused by roller preloading.

An optimum condition for preloading is reached when rollers without any load, touching the sliding track, are not blocked and you can easily let them roll on the track just by hand.

For the simultaneous assembly of several roller slides in one system, it is possible that not all rollers can remain in contact with rails, because of the natural deformation of the rails.

In this case it is not advisable to act on the eccentric pins.

It is important to check the smoothness capacity of the whole system, which should be high; if not, loosen the pins and repeat the adjustment.

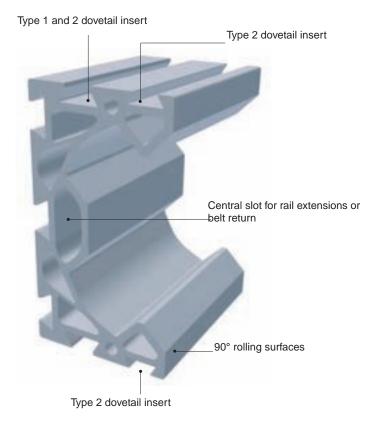
Please follow these instructions to disassemble roller slides: loosen the screws and the eccentric bushings (4) placed on the roller slide end, and the assembly pin CH24 bolts (5); free the roller slide from the equipment (welded parts or plates) and take it off; remove pins and bushings; split the two roller slide parts (1 and 2) and remove them from the rail.

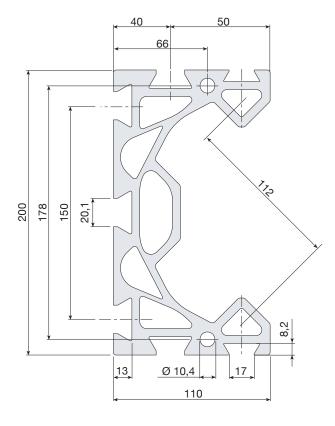
To assemble the roller slide please follow the instructions in reverse order. Before blocking the CH24 bolts, adjust the roller slide by rotating counter-clockwise the eccentric bushing marked with the single notch (6) until all rollers touch the rail.

Do the same with double notched bushing. Repeat the previous fine-adjustment, by paying attention that rollers without any load can easily slide on the track just by hand.

Rail specifications

SYS2 rail has been developed to obtain a very strong asymmetrical section and limited on load structural deformation. It is provided with slots that can be used with a wide range of accessories.

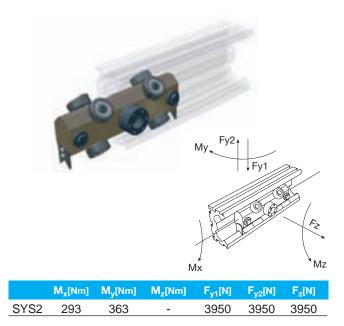

The rail surface is chemically treated, in order to obtain a great hardness above all on roller sliding tracks, guaranteeing its long-life.

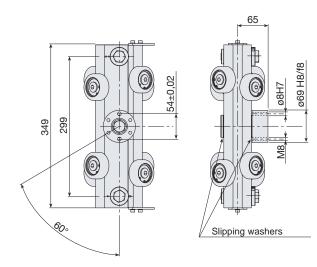

Specifications	
Material:	hard. and temp. light alum. alloy (AIMgSi)
Quality:	F = 25
Tolerances:	1/2 UNI 3879
Tear resistance:	R = 245 - 270 N/mm ²
Yelding point:	Rp = 215 - 240 N/mm ²
Hardness:	HB = 70 - 90

Surface treatment: deep anodising (bronze coloured) , thickness > 0,055 $\, \rm mm$

SYS2 rail	Code 302.0539			
Size	200x110	mm		
Weight	16,8	Kg/m		
Max. length	7,5	m		
Moment of inertia X (Ix)	31.900.000	mm ⁴		
Moment of inertia Y (ly)	6.600.000	mm ⁴		
Bending section mod. (Wx)	319.000	mm³		
Bending section mod. (Wy)	120.000	mm ³		

*Holes for M14 thread and PVS® connectors

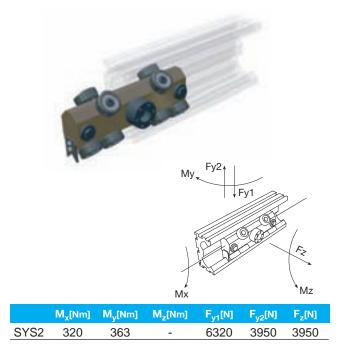


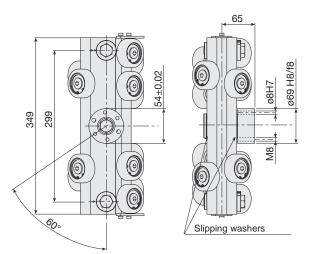


Roller slide size

Code 304.0833

8-roller slide, assembly with 1 self-aligning pin.

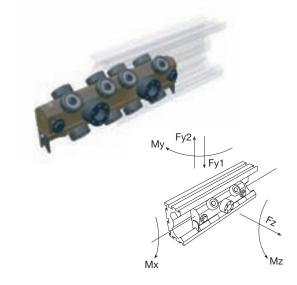




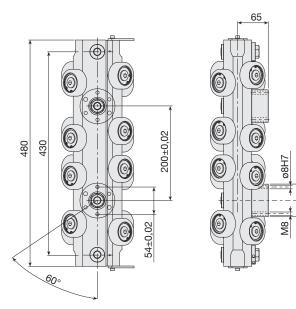
Specifications				
1				
2				
8				

Code 304.0001

12-roller slide, assembly with 1 self-aligning pin.



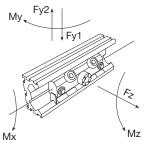
Specifications	
Support pins no.	1
Adjusting bushings no.	2
Rollers no.	12


ø69 H8/f8

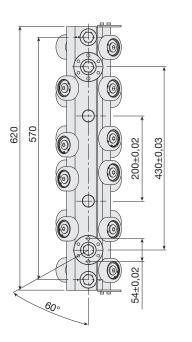
Code 304.0911

16-roller slide, fixed assembly with 2 pins centre-distance: 200 mm

	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _{y1} [N]	F _{y2} [N]	F _z [N]
SYS2	470	620	705	6320	6320	6300



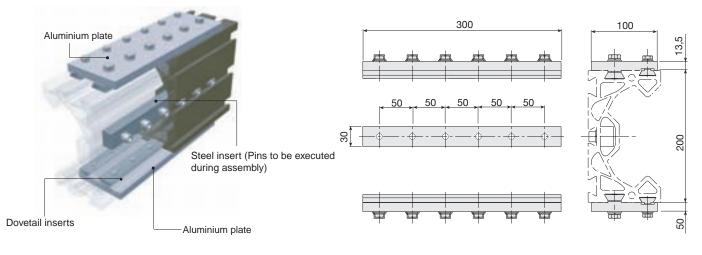
Specifications	
Support pins no.	2
Adjusting bushings no.	2
Rollers no.	16


Code 304.0902

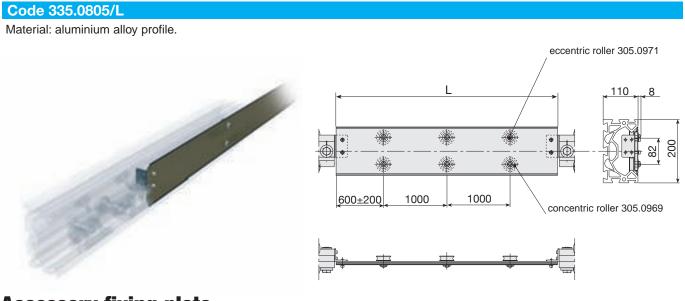
20-roller slide, fixed assembly with 2 pins centre-distance: 430 mm

	M _x [Nm]	M _y [Nm]	M _z [Nm]	F _{y1} [N]	F _{y2} [N]	F _z [N]
SYS2	700	820	705	6320	6320	6320

65		
	28H7	ø69 H8/f8
	M8	


Specifications	
Support pins no.	2
Adjusting bushings no.	2
Rollers no.	20

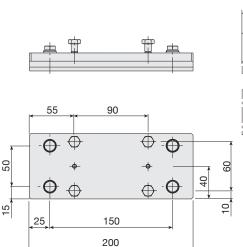
S Y

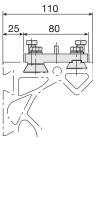

Rail connecting plate

Code 336.0803

N.B.: please ask for the specific rail machining.

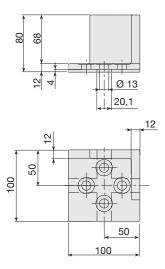

Roller slide guard profile




Accessory fixing plate

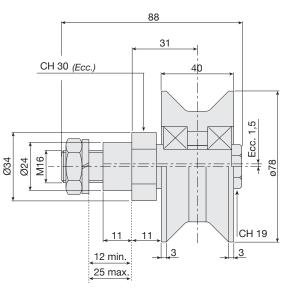
Code 336.0810

Material: bronze anodised 6082 aluminium alloy.



Code 213.1100

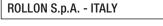
Material: aluminium alloy extrusion.



Ø78 V-shaped rollers

Material: high-resistance black polyamide coating. Eccentric or concentric blued steel pin.

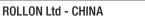
Туре	Weight [kg]	PR [N]	PA [N]	Speed [m/s]	Code
Ecc.	0,6	500	130	2	305.1037
Conc.	0,6	500	130	2	305.1036


Code Parts Index

Code	pag.	Code	pag.	Code	pag.	Code	pag.		pag.	Code	pag.
1010732	23	3040357	16	3040837	11	3150662	14	A30-76	26	B32-55	24
2090467	23	3040359	16	3040866	11	3150713	19	A30-86	26	B32-60	24
2091202	23	3040363	16	3040902	37	3150724	19	A32-40	23	B32-65	24
2111061	23	3040365	16	3040911	37	3150882	19	A32-50	23	B32-67	24
2111077	24	3040383	16	3041017	18	3151031	15	A32-55	23	B32-85	24
2111617	29	3040385	16	3050730	17	3151032	15	A32-55	23	B33-21	25
2112349	21	3040401	16	3050731	17	3360003	31	A32-60	23	B33-26	25
2112351	21	3040403	16	3050732	17	3360004	31	A32-61	24	B33-28	25
2112363	21	3040409	16	3050733	17	3360005	31	A32-65	23	B35-15	25
2112366	21	3040411	16	3050747	17	3360007	30	A32-67	23	B35-20	25
2112367	21	3040417	16	3050748	17	3360188	19	A32-80	23	B35-30	25
2112426	21	3040419	16	3050951	12	3360198	19	A32-81	24	B35-40	25
2112429	21	3040423	16	3050958	12	3360597	28	A32-82	24	BD31-30	25
2112429	21	3040425	16	3051036	39	3360666	20	A32-83	24	BD31-50	25
2130756	26	3040476	16	3051037	39	3360701	13	A32-84	24	BD31-60	25
2131100	39	3040601	16	3051570	18	3360702	13	A32-85	23	BD31-90	25
2150007	21	3040602	16	3051571	18	3360707	13	A32-86	24	C30-00	26
2152137	20	3040607	16	3120158	28	3360708	13	A32-87	24	C30-02	27
2152368	20	3040608	16	3120159	28	3360709	13	A32-89	24	SYS1-G	
3020147	30	3040609	16	3120679	28	3360710	13	A33-20	25	3020001	8
3020539	35	3040610	16	3120680	28	3360738	13	A33-26	25	SYS1-H	
3040001	36	3040611	16	3120846	28	3360739	13	A33-28	25	3020552	9
3040203	16	3040612	16	3120935	30	3360803	38	A35-20	24	SYS1-M	
3040205	16	3040617	16	3121026	30	3360810	38	A35-25	24	3020113	8
3040221	16	3040618	16	3121572	19	3360879	19	A35-30	24	SYS1-P	-
3040223	16	3040623	16	3130884	30	3361001	12	A35-40	24	3020714	8
3040225	16	3040624	16	3130885	30	3361002	12	A35-60	24		Ū
3040229	16	3040625	16	3140164	22	3361069	28	A39-10	27		
3040231	16	3040626	16	3140166	22	3020001	20	A39-10 ALU			
3040233	16	3040627	16	3140169	22	SYS1-G	8	A39-25/5000			
3040237	16	3040628	16	3140170	22	3020113	0	A39-25/6000			
3040239	16	3040633	16	3140170	22	SYS1-M	8	AC31-30	23		
3040243	16	3040636	16	3140172	22	3020552	0	AC31-30	23		
3040245	16	3040637	16	3150001	20	SYS1-H	9	AC31-40 AC31-50	23		
3040243	16	3040638	16	3150001	20	3020714	3	AC31-50	23		
		3040638		3150002		SYS1-P	8				
3040265	16		16 16		20			AC31-90	23		
3040281	16 16	3040644	16 16	3150004	20	3350805/L	38	B20-60	29 20		
3040283	16	3040645	16	3150005	20	A20-60	29	B20-90	29		
3040285	16	3040646	16	3150185	20	A20-60	29	B24-00	29		
3040289	16	3040667	18	3150578	20	A20-90	29	B30-10	26		
3040291	16	3040716	10	3150583	20	A24-00	29	B30-20	26		
3040293	16	3040717	10	3150655	15	A24-00	29	B30-53	26		
3040297	16	3040718	11	3150656	15	A30-00	26	B30-54	26		
3040299	16	3040719	11	3150657	15	A30-02	27	B30-55	26		
3040303	16	3040720	12	3150658	15	A30-10	26	B30-56	26		
3040305	16	3040726	16	3150659	14	A30-20	26	B30-63	26		
3040323	16	3040727	16	3150659	14	A30-54	26	B30-64	26		
3040325	16	3040728	16	3150660	14	A30-55	26	B30-65	26		
3040341	16	3040729	16	3150660	14	A30-56	26	B30-66	26		
3040343	16	3040734	16	3150661	14	A30-64	26	B32-30	24		
3040349	16	3040735	16	3150661	14	A30-65	26	B32-40	24		
3040351	16	3040833	36	3150662	14	A30-66	26	B32-50	24		
		I	I								

												_				
-										_		_				
_																
-																
										_						
										_						

Via Trieste 26 I-20871 Vimercate (MB) Phone: (+39) 039 62 59 1 www.rollon.it - infocom@rollon.it


Branches:

ROLLON GmbH - GERMANY

Bonner Strasse 317-319 D-40589 Düsseldorf Phone: (+49) 211 95 747 0 www.rollon.de - info@rollon.de

ROLLON S.A.R.L. - FRANCE

Les Jardins d'Eole, 2 allée des Séquoias F-69760 Limonest Phone: (+33) (0) 4 74 71 93 30 www.rollon.fr - infocom@rollon.fr

51/F Raffles City, 268 Xi Zang Middle Road, 200001 Shanghai (China) Phone: (+86) 021 2312 7582 www.rollon.cn.com - info@rollon.cn.com

ROLLON B.V. - NETHERLANDS

Ringbaan Zuid 8 6905 DB Zevenaar Phone: (+31) 316 581 999 www.rollon.nl - info@rollon.nl

ROLLON Corporation - USA

101 Bilby Road. Suite B Hackettstown, NJ 07840 Phone: (+1) 973 300 5492 www.rolloncorp.com - info@rolloncorp.com

ROLLON India Pvt. Ltd. - INDIA

1st floor, Regus Gem Business Centre, 26/1 Hosur Road, Bommanahalli, Bangalore 560068 Phone: (+91) 80 67027066 www.rollonindia.in - info@rollonindia.in Rep. Offices:

ROLLON S.p.A RUSSIA	~	
---------------------	----------	--

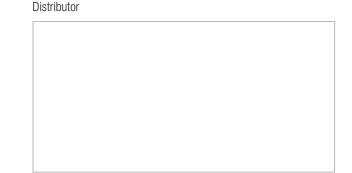
• Rollon Branches & Rep. Offices

117105, Moscow, Varshavskoye shosse 17, building 1, office 207. Phone: +7 (495) 508-10-70 www.porлон.pd) - info.russia@rollon.com

• Distributors

Regional Manager:

ROLLON - SOUTH AMERICA


R. Joaquim Floriano, 397, 2o. andar Itaim Bibi - 04534-011, São Paulo, BRASIL Phone: +55 (11) 3198 3645 www.rollonbrasil.com.br - info@rollonbrasil.com

Consult the other ranges of products

All addresses of our global sales partners can also be found at www.rollon.com

Changes and errors excepted. The text and images may be used only with our permission.

